или
Fк = (m * rо * Δωрад) / Δt (4.2.3)
Поскольку
Δωрад / Δt = εрад,
то после дифференцирования выражения (5.5.3) в предположении, что переменной дифференцирования является (Δωо) сила Кориолиса определится также следующим выражением:
Fк = m * rо* εрад (4.2.4)
Как видно выражение (4.2.3), (4.2.4) отличаются от привычной традиционной формулы для силы Кориолиса. В них отсутствует множитель «2», а также радиальная скорость относительного движения и угловая скорость переносного вращения. Зато присутствует радиус, который нельзя дифференцировать по времени, т.к. по физическому смыслу динамики вращательного движения это величина постоянная.
С учётом меры вращения (rо) выражение (4.2.3) и (4.2.4) можно переписать в символах динамики Ньютона:
Fк = (m * rо * Δωрад) / Δt = (m *
= m * Δω *r / Δt = m * ΔV/ Δt = m * ак (4.2.3*)
или
Fк = m * rо* εрад = m *
= m * ак (4.2.4*)
Поскольку мы фактически вели расчёт по приращению линейной скорости переносного вращения, то совершенно очевидно, что ускорение Кориолиса (ак) определяет только приращение линейной скорости по абсолютной величине. Об этом же свидетельствует и мерная вращательная динамика (см. выражения (4.2.3*) и (4.2.4*)). Никакого центростремительного ускорения по вращению радиальной скорости в его составе нет. Приращение угловой скорости во вращательном движении с постоянным радиусом свидетельствует о приращении только линейной скорости вращения.
Таким образом, предложенный подход к динамике вращательного движения через меру вращения – образцовый радиан, имеющий размерность один метр вращения [мрад], позволяет установить истинный смысл явления Кориолиса, который в классической физике настолько глубоко спрятан в различных абстракциях в виде всяческих моментов, что вот уже более 200 лет его никто не может отыскать.
Для того чтобы иметь возможность сравнивать величину ускорения Кориолиса, полученного с помощью размерного образцового радиана с классическим ускорением Кориолиса необходимо привести полученные нами выражения к традиционному классическому виду с использованием соотношений второго закона Кеплера (ω1 / ω2 = r22 / r12).
В традиционной формуле ускорение Кориолиса, как известно, определяется через угловую скорость переносного вращения и радиальную скорость относительного движения. Для приведения полученных выражений к традиционному виду преобразуем выражение (4.2.1) следующим образом:
Δωрад = ω2рад– ω1рад = ω1 * r2 / rо – ω2 * r2 / rо =
= (ω1 * r2 – ω2 * r2) / rо (4.2.5)
Выразим (ω2) через (ω1) в соответствии со вторым законом Кеплера (ω1 / ω2 = r22 / r12):
ω2 = ω1 * r12 / r22
Подставим полученное выражение для (ω2) в (4.2.5):
Δωрад = (ω1 * r22 – ω1 * r12) / (r2 * rо) = ω1 * (r22 –