С учётом истинной силы Кориолиса структура приращения поворотного движения по линейной скорости переносного вращения для радиального движения от центра вращения выглядит следующим образом.
(– Vли = – ω2 * r2) ← О → (Vлн = ω1 * r1) → (Vлд = ω1 * r2)
Fкп = (Fкс→ О ←Fки Fкд→)
где:
О – исходное вращение без радиального движения
Fки – истинная сила Кориолиса
Fкс – статическая сила Кориолиса
Fкд – динамическая сила Кориолиса
Fкп – полная сила Кориолиса
Vли – истинная линейная скорость, которую тело приобретает под действием истинной силы Кориолиса
Vлн – начальная линейная скорость исходного вращательного движения
Vлд – динамическая линейная скорость, которую тело приобретает под воздействием динамической силы Кориолиса
ω1 – исходная угловая скорость
ω2 – угловая скорость, которая устанавливается в каждом интервале времени дифференцирования при радиальном движении в отсутствие прямых тангенциальных сил.
Стрелочками обозначено направление действия сил (←Fки; Fкс→; и Fкд→). Влево – уменьшение угловой и линейной скорости. Вправо – увеличение или поддержание угловой и линейной скорости.
Поясним приведённую структуру.
Линейная скорость переносного вращения в отсутствие поддерживающей силы Кориолиса изменяется от начального значения (Vлн = ω1 * r1) до значения истинной линейной скорости (Vли = ω2 * r2), обеспечиваемой истинной силой Кориолиса (←Fки). Следовательно, поддерживающая сила Кориолиса, за счёт которой угловая скорость сохраняется на неизменном уровне (ω1) должна изменять линейную скорость во всём диапазоне от значения (Vли = ω2 * r2) до значения (Vлд = ω1 * r2).
При этом статическая составляющая напряжения Кориолиса и истинная сила Кориолиса (Fкс→←Fки) компенсируют друг друга, потенциально обеспечивая разное направленное приращение движения от значения линейной скорости (Vли = ω2 * r2) до исходной линейной скорости (Vлн = ω1 * r1) и обратно. Приращение линейной скорости от её исходного значения (Vлн = ω1 * r1) до конечной линейной скорости (Vлд = ω1 * r2), обеспечивает динамическая составляющая силы Кориолиса (Fкд→).
Любая сила определяется не только геометрическим приращением движения материальной точки, но и затратами на преодоление сил противодействия движению. Следовательно, для определения полного силового напряжения Кориолиса (Fкп) необходимо учитывать не только реальную динамику приращения поворотного движения, но и её потенциальное непроявленное