Такая чувствительность к малым изменениям начальных условий может сорвать мои попытки использовать выписанные мной уравнения для предсказания будущего игральной кости. Уравнения у меня есть, но могу ли я быть уверен в точности определения угла, под которым кубик вылетает из моей руки, скорости его вращения, расстояния до стола?
Конечно, не все так уж безнадежно. Бывают случаи, в которых малые изменения не приводят к разительным отклонениям результатов уравнений, как в примере траекторий на классическом бильярдном столе. Важно осознавать, когда познание невозможно. Прекрасный пример осознания момента, начиная с которого невозможно узнать, что произойдет дальше, был открыт математиком Робертом Мэем, когда он анализировал уравнения роста популяций.
Осознание невозможности познания
Мэй, родившийся в 1938 г. в Австралии, сначала учился физике и работал в области сверхпроводимости. Но в конце 1960-х гг. в его научной работе произошел резкий поворот, когда он познакомился с вновь образованным движением социальной ответственности в науке. Его интересы переместились с поведения групп электронов на более актуальные вопросы закономерностей динамики популяций животных. В то время биология еще не была естественной средой для человека с математическим складом ума, но работы Мэя впоследствии изменили это положение. Его великое открытие стало возможным благодаря сочетанию строгого математического образования, которое он получил как физик, и нового интереса к проблемам биологии.
В опубликованной в 1976 г. в журнале Nature статье под названием «Простые математические модели с чрезвычайно сложной динамикой»[28] Мэй рассмотрел динамику математического уравнения, описывающего циклический рост популяции. Он показал, что даже вполне невинно выглядящее уравнение может давать численные результаты с необычайно сложным поведением. Его формула популяционной динамики была не каким-нибудь сложным дифференциальным уравнением, а простым дискретным уравнением с обратной связью, которое мог обсчитать кто угодно при помощи карманного калькулятора.
Уравнение динамики популяции с обратной связью
Рассмотрим популяцию животных, численность которой может варьироваться от нуля до некоторого гипотетического максимального значения, обозначенного N. Существует некоторая доля Y этого максимума (лежащая между 0 и 1), определяющая