О том, чего мы не можем знать. Путешествие к рубежам знаний. Маркус дю Сотой. Читать онлайн. Newlib. NEWLIB.NET

Автор: Маркус дю Сотой
Издательство: Азбука-Аттикус
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2016
isbn: 978-5-389-12646-6
Скачать книгу
бы одна шестерка,

      2) что при броске двенадцати костей выпадут по меньшей мере две шестерки или

      3) что при броске восемнадцати костей выпадут по меньшей мере три шестерки.

      Пипс собирался поставить 10 фунтов (что эквивалентно 1000 фунтов в сегодняшних деньгах) и был бы очень рад получить хороший совет. Интуиция Пипса подсказывала ему, что наиболее вероятен третий вариант, но Ньютон ответил, что с точки зрения математики должно быть справедливо обратное. Ставить следует на первый вариант. Однако для решения этой задачи Ньютон обратился не к своему математическому анализу и законам движения, а к идеям, разработанным Ферма и Паскалем.

      Но, даже если бы Ньютон и смог решить выписанные мною уравнения, описывающие траекторию игральной кости, обнаружилась бы еще одна проблема, способная уничтожить всякую надежду на познание будущего моей кости. Хотя Паскаль и говорил о своем пари с Богом, в его анализе есть одна интересная строка, сильно затрудняющая любые попытки познания будущего: «Разум тут ничего решить не может. Нас разделяет бесконечный хаос»[23].

      Судьба Солнечной системы

      Если Ньютон – мой герой, то французский математик Анри Пуанкаре в моей истории о предсказании будущего должен быть злодеем. И все же я не могу винить его за то, что он нанес один из самых сокрушительных ударов всем желающим узнать, что произойдет дальше. Он и сам был не особенно рад своему открытию с учетом того, что оно обошлось ему весьма недешево.

      Пуанкаре, родившийся столетием позже Лапласа, разделял веру своего соотечественника во Вселенную, устроенную наподобие часового механизма, управляемую математическими законами и совершенно предсказуемую. «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент».

      Понимание устройства мира было, с точки зрения Пуанкаре, главным стимулом занятий математикой. «В математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию физического закона»[24].

      Хотя законы движения Ньютона породили целый массив математических уравнений, описывающих эволюцию физического мира, большинство таких уравнений все еще чрезвычайно сложно было решить. Возьмем уравнения состояния газа. Газ можно считать состоящим из молекул, сталкивающихся друг с другом как мельчайшие бильярдные шары, и будущее поведение газа теоретически подчиняется законам движения Ньютона. Но само количество таких шариков означает, что любое точное решение этой задачи недостижимо. Статистические или вероятностные методы по-прежнему оставались значительно лучшим средством понимания поведения миллиардов молекул.

      Однако в одном случае число бильярдных шаров было достаточно малым, и решение задачи представлялось достижимым. Речь идет о Солнечной системе. Пуанкаре был одержим вопросами предсказания


<p>23</p>

Перевод С. Долгова.

<p>24</p>

«Наука и метод», гл. III. Перевод под ред. Л. С. Понтрягина. Если быть точным, в оригинале Пуанкаре пишет: Les faits mathématiques dignes d’être étudiés, ce sont ceux qui, par leur analogie avec d’autres faits, sont susceptibles de nous conduire à la connaissance d’une loi mathématique, de la même façon que les faits expérimentaux nous conduisent à la connaissance d’une loi physique, т. е. «В математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию какого-нибудь математического закона, совершенно подобно тому, как экспериментальные факты приводят к открытию физического закона».