Почему вейвлет Морле идеален для анализа криптовалют?. Ярослав Васильевич Суков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ярослав Васильевич Суков
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2025
isbn:
Скачать книгу
традиционными методами анализа. Вейвлет-преобразование позволяет анализировать сигналы как в частотной, так и во временной области, что делает его особенно полезным для нестационарных данных.

      Преимущества вейвлета Морле:

      1. Временно-частотный анализ:

      – Вейвлет Морле позволяет одновременно анализировать как временные, так и частотные характеристики сигнала. Это позволяет выявлять локальные особенности и изменения в данных.

      2. Адаптивность:

      – Вейвлет-преобразование адаптируется к изменениям в данных, что делает его более гибким по сравнению с Фурье-анализом.

      3. Устойчивость к шуму:

      – Вейвлеты могут быть более устойчивыми к шуму и артефактам в данных, что позволяет получать более точные результаты.

      4. Многомасштабный анализ:

      – Вейвлет-преобразование позволяет анализировать данные на различных уровнях разрешения, что помогает выявлять как глобальные, так и локальные тренды.

      Таким образом, цель книги – продемонстрировать, как вейвлет Морле может преодолеть ограничения традиционных методов анализа и предоставить более глубокое понимание сложных и нестационарных данных, таких как криптовалютные временные ряды.

      Часть I: Теоретические основы

Основы вейвлет-анализа

      Вейвлет-анализ представляет собой мощный инструмент для анализа сигналов и временных рядов, который позволяет изучать данные как в частотной, так и во временной области. Это делает его особенно полезным для работы с нестационарными сигналами, которые часто встречаются в реальных данных.

      1.1. Что такое вейвлеты? Краткая история и ключевые понятия

      Определение вейвлетов:

      Вейвлеты – это математические функции, которые интегрируются в ноль, локализованы во времени и частоте, и используются для представления данных или функций. В отличие от синусоидальных волн, используемых в Фурье-анализе, вейвлеты могут иметь различные формы и масштабы, что позволяет им адаптироваться к различным особенностям сигнала.

      Краткая история:

      – 1910: Альфред Хаар ввел первую ортогональную систему функций, известную как вейвлеты Хаара, но их значение не было полностью осознано до 1980-х годов.

      – 1980-е: Жан Морле и Алекс Гроссман разработали концепцию вейвлет-преобразования, которая стала основой для современного вейвлет-анализа.

      – 1988: Ингрид Добеши предложила ортогональные вейвлеты с компактным носителем, что сделало вейвлет-анализ более практичным и применимым к различным задачам.

      Ключевые понятия:

      1. Материнский вейвлет:

      – Это базовая функция, из которой путем сдвига и масштабирования получаются все остальные вейвлеты. Примеры включают вейвлет Хаара, Морле и Добеши.

      2. Вейвлет-преобразование:

      – Процесс разложения сигнала на вейвлеты. Существует два основных типа: непрерывное вейвлет-преобразование (CWT) и дискретное вейвлет-преобразование (DWT).

      3. Многомасштабный анализ:

      – Вейвлет-анализ