ML для новичков: Глоссарий, без которого ты не разберёшься. Артем Демиденко. Читать онлайн. Newlib. NEWLIB.NET

Автор: Артем Демиденко
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2025
isbn:
Скачать книгу
закодировать пол с помощью бинарного кодирования: «мужчина» = 1, «женщина» = 0.

      Если признаки имеют разные масштабы (например, «возраст» варьируется от 18 до 100, а «доход» – от 20,000 до 200,000), это может негативно повлиять на работу алгоритма. В таких случаях применяются методики нормализации, такие как шкалирование Min-Max или Z-преобразование. В результате данные приводятся к единому масштабу.

      Разделение набора данных

      После завершения этапов подготовки и преобразования необходимо разделить набор данных на обучающую и тестовую выборки, чтобы оценить эффективность модели. Обычно используется соотношение 80/20 или 70/30. К примеру, если у вас есть 1000 наблюдений, 800 из них можно использовать для тренировки модели, а оставшиеся 200 – для проверки её качества.

      Важно отметить, что случайное разбиение наборов данных может привести к смещению в выборке. Для повышения репрезентативности данных можно использовать метод стратифицированной выборки, который обеспечивает пропорциональное представительство каждого класса в обучающей и тестовой выборках.

      Обучение алгоритма

      Когда обучающий набор данных готов, алгоритм начинает свою работу. Он анализирует данные и учится выявлять закономерности. В зависимости от типа алгоритма процесс обучения может отличаться. Например, в случае линейной регрессии алгоритм пытается минимизировать ошибку между предсказанными значениями и реальными значениями с помощью метода наименьших квадратов.

      ```python

      from sklearn.linear_model import LinearRegression

      from sklearn.model_selection import train_test_split

      # Разделение данных

      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

      # Создание модели

      model = LinearRegression()

      # Обучение модели

      model.fit(X_train, y_train)

      ```

      После обучения алгоритм тестируется на тестовой выборке. Ключевой метрикой для оценки производительности модели могут служить такие показатели, как точность, полнота, F1-мера и другие, в зависимости от специфики задачи.

      Итог

      В заключение отметим, что работа алгоритма с обучающим набором данных играет решающую роль в успехе всего процесса машинного обучения. Правильная подготовка, очистка и преобразование данных, а также корректное разбиение на обучающую и тестовую выборки обеспечивают хорошую основу для точных предсказаний. Обращайте внимание на детали на каждом этапе, и это станет залогом успешного применения машинного обучения в ваших проектах.

      Алгоритмы обучения без учителя

      Обучение без учителя представляет собой один из ключевых подходов в машинном обучении, который позволяет извлекать информацию из данных в тех случаях, когда отсутствуют явно заданные метки или категории. Этот метод помогает находить скрытые структуры в данных, группируя подобные наблюдения и выявляя закономерности. В этой главе мы рассмотрим основные алгоритмы обучения без учителя, их характеристики, примеры применения и рекомендации по выбору подходящих методов для решения