В представленной на рис.2.1. разрядной сетке числа -2,21*10—5 старший разряд равен 1 (число отрицательное). Следующие восемь бит хранят характеристику – смещенный порядок, т.е. порядок числа, увеличенный на значение смещения. Значение смещения для четырехбайтового представления равно 127. Смещение порядка применяют для упрощения операций над числами с плавающей точкой. В рассматриваемом примере характеристика равна: 127+ (-5) =12210= 11110102.
С девятого разряда размещается мантисса: 22110= 110111012.
Громоздкая двоичная запись часто заменяется шестнадцатеричным представлением: BD6E10000.
Четырех байтовый формат хранения представляет числа в диапазоне 3,4*10-38-3,4*1038; точность этого формата составляет 7 знаков в десятичном представлении.
В случае если мантисса числа превышает имеющуюся у формата разрядность, младшие разряды округляются и отбрасываются: 123456789,987654321 → 123456800,0.
Числа двойной точности обычно не являются результатами измерений, но позволяют избежать накопления ошибок округления при вычислениях.
В двойном формате порядок занимает 11 разрядов, а мантисса – 52 разряда.
8 -ми байтовый формат представляет числа в диапазоне ±4,9*10—324 – 4,9*10324; формат двойной точности в десятичном представлении составляет 15 знаков, смещение порядка равно 1024.
Фиксированное представление чисел позволяет хранить точное значение числа, а представление с плавающей точкой – округляется до точности представления и отображается на экране (без форматирования) в экспоненциальном виде: 1.234568Е+08, где конструкция Е+08 указывает на сдвиг запятой на количество знаков вправо (+) или влево (-).
2.2.Компьютерная арифметика. Булевы функции
Компьютерная арифметика.
В двоичной системе, как и в любой системе счисления возможны все арифметические операции: сложение, вычитание, умножение, деление.
При этом, целочисленное представление чисел позволяет применить правила непосредственно к хранящимся данным. Использование представления с плавающей точкой в операциях сложения и вычитания требует предварительного выравнивания порядков чисел-операндов, и результат вычислений подвергается нормализации. При умножении и делении вещественных чисел порядок результата вычисляется соответственно сложением (вычитанием) порядков операндов, а мантисса – перемножением (делением) мантисс операндов.
Сложение. Правила сложения двоичных чисел те же, что в десятичной системе счисления, только каждый разряд суммы может принимать одно из двух значений – ноль или единица. Точно так же, как и в десятичной системе, для сложения чисел их удобно записать в столбик.
Сложение чисел нужно производить поразрядно, начиная с младшего разряда. При этом применяются следующие правила:
При сложении двух единиц мы получим ноль