365 дней немецкого. Тетрадь одиннадцатая. Елизавета Хейнонен. Читать онлайн. Newlib. NEWLIB.NET

Автор: Елизавета Хейнонен
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
id="note_1">

      1

      О том, какие существительные относятся к слабому склонению, подробно рассказывается в пятой тетради (день 142).

      2

      Вильгельм Конрад Рентген (1845-1943). Немецкий физик, первый в истории лауреат Нобелевской премии по физике за открытие в 1895 году излучения, впоследствии названного в его честь.

/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCAGyBH4DASIAAhEBAxEB/8QAHAABAAIDAQEBAAAAAAAAAAAAAAYHAwQFAggB/8QAYRAAAQMDAgQCBgMJCQsICQMFAQACAwQFEQYSBxMhMUFRFCJhcYGRMqGxCBUWIzZScnSyMzQ3QnOCs8HRFyQ1VGJ1kpOio/AlOFWDpLTC4SYnQ0ZjZITD0kSU8ShTVsTi/8QAGQEBAAMBAQAAAAAAAAAAAAAAAAIDBAEF/8QANBEBAAICAQMDAQUIAgIDAAAAAAECAxEEEiExE0FRYQUUInHRMoGRobHB4fAjNDNCNYLx/9oADAMBAAIRAxEAPwC5kREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBFEtXcQaLSkxpDR1FXV8sSbGDaxrSSAS4+49gVF9HcRb5qbW9NRVHIgopGyEwRR+TCRlxye+PJbKcLNfHOXWoiNoTkrE6WqiIsaYiIgIiICIiAiIgIo/qTW1k0u3bXVBfUEZbTQgOkI88eA9+FDm8W7tc5XtsmlJ6lrTjILpD8Q1vT5rXi4efLXqrXt8z2/qhN6x2WiirL+6nerY8Ov2kqmmhJwZAHsx7twwfmtus4tWyWW2x2f8c+pqWx1Ec8bmuiYSBnPYnr5lSngcjf7O/rHeHPUqsJERYlgiIgIiICIiAiKvOJeurnperpKG1siY+aMyvmkbu6ZwGgdvDr8FdgwXz3ilPKNrRWNysNFHdC6hqNT6YhuNXE2Ofe6N+wYa4jxH/HfKkShkpbHeaW8w7E7jYiIoOiKotWcUr5atWVNDQxU7Kajk5ZZIzcZMdyTnpn2K1qGq9NoKerDDGJ4mybD3bkA4+tac3FyYaVvfxZGt4tMxDOiIsyQiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiw1dXT0FJLV1UrYoIWF8j3dmgKrPwx1Xry9S0Gli23UUXV87sbg3PQudg4z4BvX39Vpwca+aJmO0R5mfCNrRVYupto0td3OAI9BmzkdxscqT4Ufl/R/ycv7BXf1PT680raKh9Zd23S21UTqecuy7ZvBbk56jv0IOM4z5Lg8J/wAvqT+Sl/YK9rjYfT4eWYtExMT4/JRa27wv9F4llZDE+WV4ZGxpc5zjgNA7kqsJNZ6o1tdprfo5jKOjh+nWTDqR4Ekg7c9cAAn68eJh49825jtEeZnxC+1ohaSKl7+/iNossrqm8vqqdzscxjuZGD5Oa4dM+74qc6B11Hq6jfDURthuNOAZWN+i9v5zf6x4fFXZeFemP1azFq/MIxkiZ1KXoqs1jxJ1HbXPhpLFNbYS90bKuriJLyPFoxt8Pb0XD05xCvsdruELZam53irlY2kYWmTYMOL3Bo8unQfYFZX7MzWx9fb+Lk5axOl3oqP0XrnVEmsKOiq6yesjqZuVNDK0HbnuR09Xb3+BV4KjlcW/GtFbTvaVLxaNwKKcQNYt0lZwYMPr6rLadp6huO7yPIZHvOFK189cTbs+6a3rW7iYqMinjB8Nv0v9rcrfs7jRnz6t4jvLmW3TXs6nD7R79Z3Govd7lkmpo5fX3E7qiTuQT5AYz7wrspqWnoqdlPSwRwQxjDY42hrW+4BRvhrRNotB20AetM10zj5lziR9WB8FKVzn8i2XNMb7R2iPyMdYirxJFHNG6OVjZGOGHNcMgj2hUlxI0dFpa5014tkeyhnlGYx2hkHXA9hwSB4YPsV1y1VPA4NmnijJGQHvAz81zrvBYr7QOoLlJTT07iHFnP29Qcg5BBCjw+Rfj5It36Z8w7esWh1kWGGpppTy4KiKQgdmvDjhRjXOuodJQRU8EIqblUDMUJ+i0Zxudjr37Ad1nx4r5LxSsd5SmYiNylqKrJLLxUulL6dJeIqR7hubSMl5bh7PVbj5n3rk6f4oXyyXY27U26ogZJy5S9gEsBBxnp9ID29fIrbH2fe9ZnHaLTHtCv1IjzC6UXB1JqCttNBBParNUXh9T9AQdWtGMguIBOD/AMEKoJ+JWpbneaY1Ff6DTtnbvhp/xbQN3Xce56eZVfG4GXkR1V1Ef77O2yRVfqKpb1rHWGppZTpGgq47ZG4tbUxxetNjuQSOnuHXz8lytJcTL3b73DRXypfVUkkgikEzQHwnON2e/Q9wVbH2Zmmk2iY3Ht7uerXel3rnXjT9pv8AFHHdaGOqbEcs3ZBb54I6rbqpnU1JNO2GSd0UbniKMZc8gZ2j2nsqf1bxN1VHKKSO3PsTZGbmiVhMzm9s5cMDsewyPNUcTj5c1/8AinUx771/lK9orHdb9HR01vpI6SjgZBBEMMjjGA0LDdrrSWS2T3GulEcELck+JPgB5knouDw1rau46JpKqtqZamd75N0kry5xw8gdSq/4oRaulaKu8CGK1tqOXTxQvGCfWw4jJOcA+72KzDxPU5M4r28T3+v5OWvqu4hJuFF6rL7VagrayZ7zJPG9rHPJEYO87W+Q7fJWKqB0DFrKSKu/BSojiaHM9I3iM5Prbfpg+3srRpbnqex6SFTebdNeLrzi3lUobnaexO0dB5nB7q77Q42s8zSY76jW+/hHHb8Pd1bhpOwXW4tuFfaqeepbj8Y8fSx23Ds745XXVCaj4k6srKuWldK60iJ5a6CAFj2keBcfWz8vcrrkZXVGndlDUiGtkphyppBuDXlvc5ByqOTxcuGtPUt58d/H+/RKt4mZ06KKkdS6r4h6VufoNfeGFzm745I6aIte3zGWexS7h1W6uvsUV4ud5hnt7y9no4hY1+R0By1ox18MruT7PvjxerNo1+/v/IjJEzrSwEUb1o3ULLb6ZYrrBb20scktRzY2u3gAEAZacdj81DtB3XXuqaltbJeI222nnYJhJTRgzDILmtIZ5eORjIVWPizfFOXqiIj8/wBHZvqdaWqiIsiYiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgq7jVepIKKissTsNqCZpsHu1pw0e7OT/ADQunwdoI6bRzqsMxJV1DnOd5hvqgfUfmVFuNsEjb9bqgg8t9KWNPta4k/tBSrg9cI6rRxowRzKOdzXD2O9YH6yPgvdy16fsyvT7z3/n/hnif+WdpNquCOo0ld4pRlpo5T8Q0kH5hUxwm/L6l/kpf2Crr1L+S12/Upv2CqU4Tfl9S/yUv7BUeB/0835f2dyft1WNxbuklu0W6GJxa6tmbASPzcFx+e3HxUL0HXa2t1heNO2Kjq6WWdznTS/SLsAEfujegx5KU8aKWSXSlNOwZbBVtL/YC1wz88fNc7gvfofRauwzPDZhIaiAE/SBADgPdgH4nyU8P4fs+bRWJ799uW75NbeL7NxL1DZ57XWaZomwTgbnRkBwwQRjMpHceS0uHujtUWLWNLWVlsfBSlsjJnmRhwC047Oz9INVyKPz6riZrWl0zDAZpJIXSzyh/wC4YGWgjxzj6wstObktjtix0iImJ35+PPlOaRuJmXA4zAHRkJI7VrMf6L1xuCVBTOZc7g6MOqWOZEx5/itIJOPf0+S7PGX8i4f11n7L1z+CH+C7r/Ls/ZKvpMx9mW18/wB4Rn/yrHbQUbKt1WykgbUuGHTCMB5Htd3WwiLxZmZ8rxfMmrGPj1feGyZ3enTHr45eeq+m1R/F/T8lv1E28RsPo1e0bnDs2VowR8QAfn5L2PsfJFc01n3hRmjddrN4fTCfQloeOwg2f6JLf6lI1WXBm/Qy2mexyzAVEEhlhYe7ozjOPccn4qzVg5mOcfIvWfn+qyk7rDhah0bZNTyMlulM98sbCxkjJXNLRnPYHHzC+drvRC23mtoA4uFLUSQhx7na4jP1L6mXzJqz8sL1/nCf+kcvX+xst5m1JntEKc8R2leGjNFWfT9JS19PA418lM0Szukcd24AuG3OAM+xVRcbncrxxQkrKCmZWVUdYRSwS/RIjJ2g9R4Nz37q+bb/AILpP5Fn7IXzvJVTaZ1/JUvYS+iuDnOb+c0POfmPtUfs61suTLa3e2u23ckRERCyvwg4qf8A+L2//j/rVDL7o3XGoLzUXSqsDYpqggvbDIwMBDQOgLyfDzV50dXT19HFV0srZYJmB7HtPQgrBertTWKz1NzqnAR08ZdjOC8+DR7ScD4rJh518d/+PHWJnt7/AKp2xxMd5aOi6avotIW6lucJhqoIjG+MkEgNcQ3qCR9EBUTcIIpuItVTyMDon3Z7HN8C0ykEfJfQGnrq++WGjuj6Y0xqY9/KLt20Z6dcDOe/xVB1f8Js/wDnl39Mtf2bNvVzTPaf8oZfEPouGGKnhZDDG2OOMBrWMGA0DwAXzvxGhbT6/urGAAGVr+nm5jXH6yvotfO/E3+EK6/pR/0bFV9jTPr2/L+8O5/2X0DRyGaigld9J8bXH4hVLxvbi5Wl3TrDIO3tH9qti3f4Mpf5Fn7IVU8cP39aP5KX7Wqj7M/7kfv/AKSll/YS7hT/AAf0X6cv7blocZx/6G0/68z9h63+FP8AB/Rfpy/tuWjxm/IyH9dZ+y9Sp/8AI/8A2n+rk/8Ai/c5XA8f3peD/wDEi+xytRVbwP8A3jd/5WL7HK0lV9pf9u/7v6Qli/Yh868SG7df3Uf/ABGH5saV9BUH+Dqb+Sb9gXz9xL/hBuv6bP6Nq+gaD/B1N/JN+wLX9pf9fB+X9oQxftWQzi3Yfvppb74RMzUW53M6dzGejx8Oh+BUe4LX7ZNWWGZ/R49IgBPiOjx8sH4FWzNDHUQvhlYHxyNLXtPYgjBC+dZG1GgtfdA4m31OW+BkiP8A+TDj4rvBn7xxr8afMd4/38/6mT8NostLi1eH0OmWWynJNTdJRE1re5YMF2PjtH85SXS1lbp/TdFbABvhjHNI/jPPVx+ZKglJLHrri16XE7nWyyxgxuH0XPHY/F5Jz4hgVorFyP8Aiw0w+/mfznx/CE695mwiIsCwREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQRjXuk/wssBp4S1lZA7mU7nds+LT7CPrAVK2i73zQN+e4QvgmHqz007SGyN9v9RC+kVr1dvorgwMraOCpaOzZow8D5helxef6NJxXr1VlVfHudx5VPceJt41RaK2gtFkEAFLI+rnMnMEcYaS7wAGQCBnz6dVDdFVF3odSQVtmt76+oi3AxBpIIcCOpHYde/sX0Uy30UVI+kjo4GU8jS18LYwGOBGCC3GCCF+0lFSUEAgoqWGmiByI4YwxvyCup9o4seO1KY+0/X+rk45mYmZchlBXaj0lLQalpYqWoqmObJHA7cGdctI6nqOh7nqFQ97sF50bdw2dssL435gq4shr/Itd5+zuF9LLxNDFUROimiZLG7ux7QQfgVRxefbj2ntus+36O3x9Sg4OJ2s54mUUNYJZX+oxzadrpHH2YHU/BWPw70fV2ZlReb04yXau+lvdudG0nJBPmT1PuCltLa7dRPL6Sgpqd57uihawn5Bba7yObW9ZpipFYnz9SuOYncztTvFHW9qvVtbZaASvmhq90r3M2tbtDm4Hn1P1Ll8NNb2/Sprae5tm5NSWuZJE3dtcM5yM+OR28leyKVedijB6Hp9vz/wenPV1bYqWojq6SGpizy5mNkZkYOCMhZUReXK0Wld7RRXy2y2+4QiWCUdR4tPgQfAhbqLtbTWdx5FDXzh/qTSFxbcLVzaqGJ+6GppgTJH+k0dR7e4+xSix8ZqYxCDUFDLDOzoZadu5rj7Wnq34ZVorVqbXb61xdVUNNOT3MsLXfaF6dufTNWK8im5j3jtKqMc1n8MoRX8ZdPU8TvQ6erq5MeqNgjafeScj5FVjBYL9rS9VVdQWuTbWVD5nPPqxM3OJxvOAcZ96v8AhsFlpnh8FooYnDsWUzGn6gt8AAYAwAu4udi48T6FO8+8y5OObftSxUcLqeigheQXRxtaSO2QMKseKeg6quqXagtMLpnloFVAwZccDAe0ePToR7B7VaiLFx+TfBk9Sqy1YtGpfNdi1lqDTLXQW+tcyHJzBI0PYD49D2PuwpNaoNV8UK6AXSd4tEEgMr2sDI+ncNA+k7rjPXGVcVRaLZVTc6pt1JNJ+fJA1zvmQtpjGRsDI2hjWjAa0YAXo5ftOk/ipjiLfKqMU+Jns4l81HZ9GW6m9MEkcGOVBHEzd9EdGj4ea+fZrqJdTyXgRkB9aanZ49X7sL6fRUcTm040T+Dcz57/AOEr0m3uiEHFDTM9tluAlqGxQvjZIHQnc1zw4gdP0D2VLavvMGoNU110pmPZDO5uwSAB2A0N649y+mEXeNzcXGvN6Unv9f8ABak2jUyh2l+IFmu9tMcXOZPQ0PPqGOj+iGAB2D4+xVpxM1Zb9VXKjdbeY6GmicC+Rm3LifAfAK/EUMHKxYcvq1p/P/DtqTaNbVZwu1ra6a0UenJ+c2sdO5seGZa7ccjr4dypRxJstTfNG1EFHGZJ4XtnZG0ZL9vcD24JUrRV35MTnjNSup3vzv8AR2K/h6ZfO+jNXXbS09VS22hbVzVu1oie1xcHtzjAHU9z0Vs2yvm0bpFtw1XW1E1RUTF8pLnS8pzuzAM9AAOw6ZJUqbTwMmdM2GNsju7w0Bx+Kyq7k82me2+jW/PfvP79dka0mvu+ZtW3eG/apr7nTtc2GeQFgeMHAAAz8leGjda2vUsMdFSc4VNPTNdM17MAYwDg+PVSlE5PNpnx1p0a6fHf/BWk1nexVTxpsO6Ojv8ACzqz+958eXUsPzyPiFayxVNLT1tO6nq6eKohfjdHKwOa7ByMg9O4CzcXPPHyxkhO9eqNIfwqsX3n0hHUyMxUXE89xPcM/iD5df5ymq8sY2NjWMaGsaMNa0YAHkF6VebLOXJN593axqNCIiqdEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQRi66/s1nuU1BVNqedCQHbIwR1APQ59q1P7qOnvzKz/VD+1SK+WmC9WiooZmNdzGHY4j6DsdCPiqMtszbZfKaWqiBbTVDTLG4Z6B3UYWfJe9JevxOPx89JnU7j6rlg1hbJ7BUXpjKj0ankEbwYxvJO3sM/wCWFy/7qOnvzKz/AFQ/tUxa4OaHNIIIyCPFVfxRsMVLPBeKaIMbOTHOGjA39wfeRn5Kd5vWNwo4tMGXJ0WiY347/wAvCQs4nWB7g1sdYT/JD+1TBVzwkqYeVcaXaBNuZJnxc3qPqP2qxl3HM2ruVfMx0xZZpSNaQ48UNPtOCysBH/wh/atq16/s13uMNDSsqubMcNL4wAOhPU59i4vFeWN9NbaJkYfUyylzcD1sAYx8SR8lL7BaIbHZ6ehiY0OYwcxwH03+JPxUYm821vwtyU49cEZOmdzvXf8An4dJERXPOEREBERAREQEREBERAREQEREBERBr11fSW2kfVVs7IIWd3vP/GT7FEZuJ1B6zqO111TEw4Mu0Nb/AF/XhR7irXzyXunoCSIIYRIG+Bc4nJ+QA+asmyTUtTZaOahjbHTvhaWMaMBox2+Cq6ptaYidaeh6NMOGuS9erq+utOFZ+Ilju07ad7pKOZ5w