Парадокс сингулярности. Андрей Конт. Читать онлайн. Newlib. NEWLIB.NET

Автор: Андрей Конт
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
уровне".

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwAAAwEBAQEBAAAAAAAAAAAAAAECAwQFBgf/xAAaAQEBAQEBAQEAAAAAAAAAAAAAAQIDBAUG/9oADAMBAAIQAxAAAAH4xtDpa257muOtXNc9zncRIq3IXVF4xvv52sTlWq4Xna9/nvpXnXVimVMi4uQFNVQ86qo3z1euk56zGnMJjsAatox0bbnQnRZ6ZLd1yzrN5y3N5oZA0zsxVS9Hfj1S+Jh046zeLy1lJyyJq5skbFcgJoMMu7g7uO2ZauK7eBx6PBvu15/Rnpc7VJvmZaZ7xLS3ztTe+Wa0WsobSVoazJdazmdGrPO/Txs5tmk6FzzWlS9YYovPHLbJpJmepcXEFozNZlV1VhnRNEPrzrHj1nOuW7ma2x1o4X1YmtYwbzF2PPWDNaRVk1EzpBGubWcuzmlrfluzY0yR5VC4lxnQBKDAqUaOHrOnoeXrrHqeb6nPrPM0Lm2RWWkS50ib235ei5xG7OfbG/J7dXi876KxvHTR51mzleWsAp3jvWuN56cyztrHcz05zRJjYrnp14uknLs5kxuA0U3YWrm768/Ux141UY6YZ6LUzdqWaWk3C1Weiuaz2TZOg5cLDq57zjPQ1wmtHZloImhR6U8mBWWiuc5qdZSGjTdsFJKvLomuY0zQAZ6TOnQ5ujLWJQXB089y7OKZ2eb6czPSN84EtY00wesdWT11jnfTlcxvLuXDjWa1yvWU3Y86iDSddK0jp1xza9Rjyub2/IuuaajPVInOqcFbKHZrtnRmic6jPs58b56ynOui+bulhLE1FRjj286zNKzZ8+hU9GNZFwOamJNMTTTNxEdnIuyy1JFJ0Yz1nAtYmqzqJQBSpaPTO98+vu8v09Y457uWspoljRyuS0iVb46oTaOZyeX2aXj0Z6VZXPoyiMst+bWCRdOfV1cF3DzmpZis5uqzpSXNKpab1jsk4dWKRorHrHRnpr1YLHXq4ujLPTC2rc3bmsul7564zpeO/O9CbzW5nWOmtSZm2vNxZ+lDHmZejz9eXLPRG5EbxYsejn1zoWm+eCoZgFVE1KNId5h1cvU5riLizasLuZuHZk9MLmtM7ZqoreL0it4vNrXOItXE1L1mt8Oi5oDXOjv11PJvr5LmSqsKAgLRaG+s56PTXCPf4O2Z83x/R827yVTO0zczSaalMLnIl2fOZu18m8ufN2551zdEuWsd4I0QTpnSyqDKNIH0c1lLVWY57c8u2d2c+2dRPTy9Zxa65LAtrM+iOg4+fo586JqM6aZQ0FOa1jXt4dtY9zy/S4NTm6JDBVKuNmmOzCsujFeER4/bdx0Z3tsnz6S7rOuXm7effPCN8enOjbDWZoUb87Vs0iWpqYVJrbQta57iWtZ1HQteffNWs9cjR56Zmwp1c+2dbTMZ6udL59cp6sowW4ZG1S49AYavIy1iGTjvO3Nl2zqcfN6eHTlx1vG+XKuudc+aejPXPJ1GsiasRUpr3+V0TZh6PFNYtPXK07a05enGzIRrhWmV9Oe1Q9ZuKVyZa46w2lc3WV2bPOtY3rJaxVZO520z3uZTLFY7k0no3xrXLS8u/lfCznzaw64PTR15X05SzBnnZnpGdsTlhVI9stVrDo5s1EGdU89DSNeY2vla7ONhcfRa8qoTWjns6OfeJefXNlDUl5bYL2Y49pyNa2GudWYLozzviW+WNyBQAOk7m9ctN49iuP09Z8ZUyX14WbHG5HOcNdKz6c68+ejPye86ubtzvW8DF6cJDPPbDeCIvfLXm9Hl1MBOWQak0QOblU6JUxy1tntNvZaY7dRJz7RNmO02E3bKms10VljdVnY3rzucdJz54rqyXCdLuoW6k57pos+griOznbxB3q4ssxW2esG3OaxHB3cvXzc8aZ9uCJN5uU7mbSzru05OvHfky6ORxvbmrc0WmNuZavM0rTWIpPeKJeuTx0nWM1ormWNLY7JtPWHcPeN1Naxeme1xVW98jty6byyx7uS81h2Kzix9DidMSk65Z9ES5To8dMI6M5vMozZVILzK1ItYdRLqomOrj01jgnXKbNImXrxtS9XI+lMcOrlpbc9xU6qxxedijSZc+rG5bW/NYtZiujk6sZXydGGNZDTQDh1GusvbN6x0e5879DqebjpxpriTNPTGxTULfTzdRwOK8nt09Dh9JrljTKJRKLq5tLnGe3LeNnyZgxKwcqKM2S2q0y0ap1pmzYOjc6Z1pnefPtrpisdul56Y6l1pil5ORLMXbo5vQ456I5ozi8cefWu/by+23pWeWHSsaHE5mixN61IusTVTUzcXWeHTGnHj2c/Xhhntj380Tca5SC1m3Fw+rjM9O3l6cnTARrjoZXc6LN273ytNCa1jQl75Ila5aTpWsZVZJNa2YLWd889Gt825rWdNM9NY02x21y7O/wA71HN8+2Nxnmp1msOnmb5I6850wnSJuaupvny0jOonaJchpZBrbirKyGKzaOfUwl14+km+QtSrbHaM9Lg9Dg1o4LoFNxqVm5lu8dpXDg015OkzTxNduXsOCi864x1NQ7mFtlWs3WV3N+z4vpaycHp+UCTmpvK5bi4sOzi7DgoPN7Oj0+H05viw7sJrjnXJNOng11jrzXTrGPnd/KmVNLrFazWBc5rBK6VAMzbvO3TTQMdUlXPstIvHa6zrO99OVZms5lxvfLNnp4+dWXYY1N6LNW0Z0lqXJprx6y64aqXljpw3IDO4dZI7OjzNZ09HKNefXKNc9Tn5+3m7efmjTPr5SKWuauWVFTLv1cXW78M2ryilWsQ5GdGEasesvSa3zeRlvmnBrGunLplv3+XR7vFnprGU+pxdOeNzeueunJprHXty6659vq+D1M+nj1cCPLs21nx46+eyJoawz64mso6sZrjjohcjVLzx0TNZTpDSpamel5I+epltxU0BEtS7Mp6MZdUtSduSJfQODUrn9Hm1nlOjlzvpyx0iZ0laTk7ObbQ5+jn7Ty72iXgLiaGEoxJVTVzfdwdep1+V6vkg86zZcs2y0zDo597MXOnm9nX7Xj/STr52HVy56cOPRkuDc6xPdxVvhSp3EJuaydE07iponQWHSlTpzTT0m60pcvRJRjo7zeN6KWri8LgQa53nelmFpxtpF47ITxVLqs3oVzz04QaYlaJVEY756mM6zeeWud6zW/MsdPQwVzrhDw6cjHXPp58wWuQ06Y5zd28W5SbPVltyas09LzzGRtcaazSa1zzz2nfLGdY1lDUluaNs2tZ6PR8bXfPqfDrc6LTt1nz62x3nTbidz7fX85rMfR6fP9Os9r4Jue/HHWzPPthJNEcmfY2uJdsM8WfbbXlLvwmuXTZzWeWsyxlrjNus7lItGboV5bQtS4gpVLz1UnornLNubfGOSuqZccurmm4qNJrXbl6bnHqx1sxjp5Zc8NTOsS4laaHSqx9HP0Wd/k+z4ySS5qQRvF5otZ6jm0jTh7e72PG2mujlnnbrPOJrTG87zojS8q6eJWdOcNq2iVFmaaZk1oFzpBtOek6F43Tbx1zulNTQ86puEynSrzyvRXGeerXPW92oWy59cY3cvO+lHK7hWodTOsM5WTV5tJnntlrM1JrNZXLL7PP6J025e/nm+JOevlnPbLpxVTUaTRndZ6Z2u+gXHnoZbqbJG9Z10h3nZK3zpI1jPPWLmRNgpNaTnWaFWshauVpjWsel3eB3WZ5mdm1Y6alXkM9D5bs2vndz6GvndNx6+Ocaw7mrNtebbOHt0dGN+bHrcq8PN6fPt4mfZjNcuPVhnriUpuhVEGuy8uuWtuU6KCLInPTNenK0bLntBLJeri20muKambvSVJvQ9R8e2WbzrfHOmRQlchU0HRzdVnoeR7HkJkImkJmsVAaZM3prh7d3mJOTkEBplrkG+HUzEbYh0c3SZqKmqqHNaVm5rSo1x0rbLXn20Whz6p4UuuRSrRvNnLZxk9yZ5zqeZyvqcvJvrWaK5nSIcLKqtMRzbMs0ka1FlpncTNRrJKVywSEhrEgrfRWW/L0efh2cnXgs9M9+crPVK1Sm8tI7M7rDfj1vOirycWLNyt8d86XTgA9c1aLCLTOaublOaKlqynD1iqirlK5sO3j7dTHPXGytMNUsVGblGtZaamlwrnu24Nt8u6sdry07MPQzOgrHj13yZXNj2YdefncXpctnn8/dhOnGb557QUBooXJrdcdTojnnu4jltOarVdZw8/VyTVk0FAPl6plzSa7dWHYcnJrz5spLOkIGgKaYuvl6rPQ8rt4JMQGkxFy5AQd8b4+b22ZuzOWrlOWnRj0quTbNGpGqqtpiVGudKdHN51rU1lWix0e+O3PrtNmOua6Cay0vow5zprnebXesTHS3zTWphmWoiNM2pRG9yrOlg0z1Jzud3Cd8NRJ66xhLx1kyc6xM0tZloGJqGmcydfFtOtcnTlZzxrn088bZdFxphpnN79i6eXp8/k6MOnMaNcqRlYEXvh0Ob6cZVRrDmpQaVlyqSW0JqtZBrWRymdCVZr0ce9m3N3+fY6gV6Z2MouW80aaYvWeqo23zvr5Ntcevu8ymPY28n0edV2Z6XOwvm8vqcO+Xm5dnJqcefUTtzztlNplKiUrVIzTqXndRNdGvPpLyxUzSKS1thVm1xEcugl19XyPTjxcdsc6cizpAwED0zR0Xgk0lUYoJQZTmkIdHp4dfP4/o4prfLNVOszpCPQxqknLoys56uWtdcTOm9Caitd875ttNMdMK1jG1vGmOkuqx1nauznMNyOdpFc49FviRd8/OVnm5aVu6zyvHelis+2zDTLsiHjvFrLDWeqOc1z16OB2ehxphEu5Ys9ToM2a3zOdOxZKKnJnRmtJrlvXLXIFWufMyzp9XxvR5+vgw1x1wSHvmZuN83caa56pVvkRee+dEiVIkbh1pIIqks0lFyDLkGUbYUnrcGs6nOb5K3CSxKrJaOp01nffCt8+u8Nd8d81Fx0dvm9Tn6nZ4O3PXtvy98b15rnWOPDuy1OLPq57rn5+vOdeedFNQbS0p1yiHTXDHfKau8tc65TbGaqS2olsl0XLy9DijbRYrz8++GOhIs6TGJMEAlyBTQISGAtKiin0WbuOjwfS8+Nc+nKZpawpsC82nROOoZ1U0rWk3srrOudlZ3TNc6V3pjpFLp59I79tuc5slpz6Tro8M8NNMyNc9cZee2cZ6Z8+99HPyc3TXRGP1vfn8zP6Uevx/nU/o5X5nH6eWflj/AFIufyk/Viz8oX6wH5Dj9x8Jz765xc2k2TUympFzZNyk3Frp0Ya56Ryb43lQTqFu8bfdpyOnFFLfCpJ6coi4Zq5esVUm+VyVvnCauRCFedFuasLy0QQrlpiOpVlONbNrjSzNCrEboqKKGI9M71nW4rXPbfDXfKplXHRtz7XjdZaJp08uub1Lncm6nU58ezBrljqzu+XDoibrn7ONtVzdDUrTKMs7WekGdzWmHbw50JVNJxRVw7Ok52kVjuvDnrlnpIGNICECBp0MEGMlUhgFuarX2fN+ws+N6+Ts8H0uHLbPeImjWJoVjTolqpbvN53o4c1ptl051jXTnnY1c0qVY3p149PLfbfFjjPcTtysZdNZmR0bs8fTeMXz58k2uDfn6d8c9sO2z7D4v7P0eT6UD2fLCMo6DnDoOcOg59SwK+T+F+6+H4eyLU560oSArXTXNtbczxudKx0lHm1cjZes9uOmfTLx1ni6pueWLy6eeYvHpzYi41Ums6Oa3yCXvnaVXMTpJnTZdZXZmtM0ZBWjhpTgs1eVWa656XO/N6fHXOMsa0SS2U3Lud9MejXPXNZ3Gxm9Z6ezzd3PfTiesdy5dk215tZnfTmqOpRc1nltNmHN6HOufLvjenHsObrHoyzrnSidpHWdac+3PjcrSM6aelubpXI6LOfV5y54dvHnWQ1naBQDQAUxNAYOpQ0wq50s7PsvjPpLPlunk6fB9LHLp57IdT0xANExisJoqbzp2XnZ047TXbk7zvEHnRa1xdO7j6MWaV46dLyXLOu2ObPVjxyu/Jjy66bHOXp182Wemphl059f1vxH3Hbh9GB6/m/N/n36D+f+f2gPn6JdET+h/A/oHTh74Hp8PynxP3PxHm92av6ma+X9r9B17eX4/r+lNY+a5PsA/MfC/a/Dzv8AMbrLn6L6eb1LPVr7w6ef4Xw/1D5Tl6PK+i+irfLwPN+xNc/yPzf2v4Ob+SSJ0S6PrmPj/e/R9d8fjO36Y1n5jk+yE/MPF/afC1Py9dPLrI40D6b539hj4N/oZnX55P6KH50/0Qr88P0MT8Yjr5OvJ3ndnoVf3S/Nep9Q+XT57L6Yl+F8P9Vw3j8qr2vF7+fXp5+nXLo77+y4+j4nD73yM7+EvKvV4r9l/acO/wAjp9WufX5jzfR8v1eDdLt3x5vT9jo8vv8AMv0Tl6PK4PpFrHxGP2PzHq8Hn5759OdZ75Z6cGfThnu6Nc7xw6M8bmdNs65p6uVZ0y2stzNXw9PIm+FrOuZVOdICUTQ0AAWWQxjQCGrvO7nb0vM6LnXPc+d9W+L2eHN5cO3Drzwepc5u6ayrZy53ek1nW8iJmXe+fpxu9LrHRaR0YvO9oyV5651W9PEy5NOI2y48emu2OXW9N7lY6rO5rDLpnrw5ftvj/su3l+lA9Xz/AJz4D9B+G8v0MN99OfojfGcb7PsPz37vr5feA9nzvk/hvt/hOHsv6j5LVf2V83j9vH9CfnnHnp+nn5z9fc+uBrHzH55+0fj/AD74+p5XrY6/qYHfxyrmKPlPJz1/QT5r6TXNpln5v4f6l+ZcfXj9R81VfsBh4vTyfQnwHJX6Ufn31aesAvzH5x+1/jWsYXianpfr347+yZ0BzZ10nyrufqT5f6eVgL+Q8Xbw9+D6+X9Ak9zuDj3A8I90+J7dZ+pM9M7Xwf3vNrn+ZdWcezxfRfY/E/beX2Hk+t5Od/Aepyfofo8m1h5fYeB0fHd/LreNez5/qfW8/X4PpgLn6Gebz9PP7S830M9I+T9Lg9XzOTn7uf0eVcnZyY6Th05zvz7zvnpxzSzt2jOlAs7jWXV4dvHLjz9GItIo5p1jKCksq1KgFAQAwEwBymmdaztNRZ0dPN2fP+p34dfn89xzarpma59LkLpc3rop05bl4a6XPHXRGN56KufXTSHnT6uRZvRnlOXZ6/j755+n5/NMuHJ6WGu3nvfm3q5wLet8lZ30545azpnC3xv7b4j7jr5/pgPT4PA+E+5+A83uqZXPuxFj/Qfz/wDQOnD6ED0eL5H4P734Ph65VDW3P9L9Zrl+XafsWln49X655kvo747dfOfmX6b+Z46+F7vh+7x9X6WB6fAvhPufyzl6eLTpz4ew+s+IvfH9iE/T4F+T/rP5bjp4kYudO/n+k+v1z/Mtf169Y/G9f1vzdY9PXLXOj8o/V/yu58B2tz1f1v8AMv03Gjw/c+WPg4nb0cD9i/Hf2Ll0oDn0/H+Xs5+/DT9d/M/1HnsBY6fNfC+j53o8zrN7x7H6P+QfpHLr7AHHv8X839t8T6vF9H9r8T9tx9B5npnPp53ogHF0fA9OWcSe3wP1fK+lxr6YDw/TXzftfHenw7Xhp6vmb78mmTejZyw6c64Ofu47rMCdpeuU6c71eOuWWmGdsTzvO5F7OXe83gy1hcW0TnpEKQlUslSaVoYm0DTExiYFpOzq6uTq8ft9Pj35+PdRc7c0bzrE6TVr2nbOnUOXa8Hnej16+d5q3wzpZPNtKZL1y6sx9MLKsefNennw5ta0ye7WOvRnWWKvWYz6ebeFBNzX3Xwn3fTj9QB6PD858B9/8D5/aUzn3cqE1++/PP0Lrw+hA7+P5P4X7/5Pze7zPtvnv0/fKgXbzM+V8LO/0c/O/Wl+uIvfM/NP0v4Hl3+b9jP1vN7/ALgD3fJy/K/1j8f5enLnJx2nbL1d8f1jRPr5j8w/T/yea8H9D+L/AGYYFyHyniH6MfnnrJ9aRan5d+o/l2s+KM6c/r/u/m/pOXU+K+1/Orn5u7278sf2H8q/VuXRgc+n5Fw93H34ev8AqX5L+tc+hnosa/Huro5PT58zpx1jH7/4P9R59O4Dh6PD+N+j+a9Pj9v7X5b6nl3A87n09E4+wj4L9A5N8/zu9Y9vzz6j5j6HG/