Таким образом, можно было определить приближение скорости света, которое можно принимать практически равным величине скорости света. И указывая, что в качестве диаметра пучка принимается 1 мкм, можно говорить о получаемой величине заряда и количестве частиц (12).
Следовательно, можно говорить о том, что можно направить энергию на расстояние в 430 км в размере 4,3*1019 Вт мгновенно, когда же эта же величина может направиться за 1,43 мкс на то же расстояние, при действии световым излучением с такой же мощностью. И если на такое, сравнительно близкое расстояние этот метод опять-таки кажется не рентабельным, то можно прибегнуть к случаю, когда расстояние составляет 1 световой год. Тогда стоит прибегнуть к иному определению.
Изначально, стоит указать, что плотность вещества в космосе составляет 3*10—28 кг/м3, что в свою очередь в 2,9967*1026 раз менее плотно, чем плотность оцениваемого водорода, равный 0,0899 кг/м3, откуда можно говорить, что при уже определённой энергии в 1025 эВ частица может преодолеть в космосе во столько же раз большее расстояние или по аналогии 1,288567*1029 км, что составляет 13 629 492 816 374,85 световых лет, что даже больше радиуса обозримой вселенной в 137 927,5 раз. Следовательно, для того, чтобы отправить энергию на расстояние в 1 световой год достаточно использовать энергию частицы, равную 733,7 ГэВ при имеющейся скорости в (13), можно определить величину заряда (14).
Таким образом, стало возможным говорить о создании нового метода передачи энергии на огромные расстояния практически мгновенно, не тратя на это несколько лет, при этом минимальное значение, разумеется, равняется величине заряда элементарного заряда, а следовательно, и тока (15), при минимальной энергии для 1 светового года в 733,7 ГэВ.
То есть, можно затрачивая в общем понимании, придавая частице всего лишь 2,762669*10—35 Вт энергии, можно направить любое количество энергии мгновенно, начиная от этого значения до бесконечности на практические любое расстояние от планеты мгновенно, не затрачивая миллиарды лет на преодоление светом или иным излучением всех преград.
Использованная литература
1. Бондарев, Б. В. Курс общей физики. В 3-х т. Т. 2. Электромагнетизм. Оптика. Квантовая физика: Учебник для бакалавров / Б. В. Бондарев. – М.: Юрайт, 2013. – 441 c.
2. Бондарев, Б. В. Курс общей физики. В 3 кн. Кн. 2: Электромагнетизм, оптика, квантовая физика: Учебник / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. – Люберцы: Юрайт, 2015. – 441 c.
3. Бондарев, Б. В. Курс общей физики. Книга 2: Элетромагнетизм, оптика, квантовая физика: Учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. – Люберцы: Юрайт, 2016. – 441 c.
4. Бондарев, Б. В. Курс общей физики. В 3 кн. Кн. 2. Электромагнетизм. Волновая оптика. Квантовая