Форма реальности. Джордан Элленберг. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джордан Элленберг
Издательство: Манн, Иванов и Фербер
Серия: МИФ Научпоп
Жанр произведения:
Год издания: 2021
isbn: 9785001953159
Скачать книгу
конкретное расстояние.

      Но на какое? Для этого нужна теорема Пифагора – первая реальная теорема геометрии. Она говорит, что если a и b – горизонтальная и вертикальная стороны прямоугольного треугольника, а c – диагональ (так называемая гипотенуза), то

      a2 + b2 = c2.

      Если a = 3, а b = 4, то c2 = 32 + 42 = 9 + 16 = 25. Мы знаем, какое число при возведении в квадрат дает 25: это число 5. Оно и есть длина гипотенузы.

      Почему эта формула верна? Вы можете начать подниматься по градиенту уверенности, нарисовав треугольник со сторонами 3 и 4 и измерив его гипотенузу, она будет близкой к 5. Затем нарисуйте треугольник со сторонами 1 и 3 и измерьте его гипотенузу; если вы обращались с линейкой достаточно внимательно, то получите что-то близкое к числу 3,16, которое при возведении в квадрат дает 1 + 9 = 10. Благодаря этим примерам уверенность увеличится, но это еще не доказательство. А вот это уже оно:

      Большой квадрат на обоих рисунках одинаков, но разбит на части двумя разными способами. На первом чертеже четыре копии нашего прямоугольного треугольника и квадрат со стороной c. На втором – тоже четыре копии, но иначе расположенные: остаток квадрата теперь занимают два меньших квадрата со сторонами a и b. Площадь, которая остается в большом квадрате после убирания четырех треугольников, должна быть одинаковой в обоих случаях, а значит, c2 (площадь, оставшаяся на первом чертеже) будет равна a2 + b2 (площадь, оставшаяся на втором чертеже).

      При желании придраться можно пожаловаться на нестрогое доказательство того, что на первом рисунке квадрат (того, что длина сторон этой фигуры одинакова, недостаточно: сожмите пальцами противоположные углы квадрата – и получите фигуру под названием ромб: это явно не квадрат, но стороны по-прежнему равны). Но пусть так. До ознакомления с этой иллюстрацией у вас нет оснований считать, что теорема Пифагора верна, но, увидев ее, вы поймете, почему теорема верна. Подобные доказательства, когда геометрическая фигура разрезается на части, которые потом переставляются, называются доказательствами разрезания и ценятся за ясность и изобретательность. Математик и астроном XII века Бхаскара[57] показывает такую форму доказательства теоремы и находит изображение настолько убедительным, что для него не требуется словесное пояснение, просто подпись в виде одного слова «Смотри!»[58]. Любитель-математик Генри Перигал в 1830 году придумал собственное доказательство разрезанием, когда пытался, подобно Линкольну, квадрировать круг; он настолько высоко ценил свою схему[59], что спустя почти шестьдесят лет завещал вырезать ее на своем надгробии.

ЧЕРЕЗ МОСТ ОСЛОВ

      Нам нужно знать, как решать геометрические задачи чисто формальными выводами, однако геометрия – это не просто последовательность чисто формальных выводов. Если бы это было так, то это был бы не лучший способ научить искусству систематических рассуждений в сравнении


<p>57</p>

В истории математики его часто называют Бхаскара II, чтобы отличать от более раннего математика с таким же именем.

<p>58</p>

Некоторые источники полагают, что доказательство Бхаскары было взято из более раннего китайского математического текста «Чжоу би суань цзин», однако по этому поводу ведутся споры; если на то пошло, то неясно, было ли у самих пифагорейцев то, что мы именуем сейчас доказательством.

<p>59</p>

Он настолько высоко ценил свою схему: Bill Casselman, “On the Dissecting Table,” Plus Magazine, Dec. 1, 2000; https://plus.maths.org/content/dissecting-table.