Далее на глазах у Франсуазы Пиаже раздвигает пошире кружки в своем ряду, так что кружки в двух рядах больше не параллельны друг другу, и его ряд занимает большее пространство. После этого он задает Франсуазе тот же самый вопрос: «Франсуаза, у кого теперь больше кружков, у тебя или у меня – или у нас обоих одинаковое количество?» На сей раз Франсуаза уверена в своем ответе и радостно говорит: «Теперь у тебя больше. Смотри, какой у тебя длинный ряд!»
Даже маленькие дети могут пройти тест Пиаже на числовое соответствие.
Взрослых такой ответ может шокировать. Как мог ребенок так ответить? На самом деле даже другим психологам трудно было поверить в то, что все дети так отвечают. Однако тот же самый результат наблюдался в разных странах мира. Может быть, если мы поставим вопрос по-другому или позволим ребенку манипулировать предметами самостоятельно, думали психологи, мы сможем подвести ребенка к решению этой задачи, которая кажется нам невероятно простой.
После многочисленных опытов профессор Рутгерского университета Рохель Гельман выяснила, что дети знают о числах больше, чем предполагали Пиаже и его последователи. Это не значит, что ваши собственные дети не провалят такую же задачу или не съедят ее «условие», если вы воспользуетесь шоколадками M amp;M’s! Но профессор Гельман выяснила, что дети просто не понимали, на какое измерение обращать внимание в этой задаче. Ребенок как бы задает себе вопросы: «Что здесь важно? Мне нужно полагаться на число предметов в каждом ряду? Или на то, сколько места они занимают? Или смотреть на то, насколько близко они друг к другу находятся?»
Оказывается, можно подготовить ребенка к тому, чтобы обращать внимание на значимое измерение – число, – и тогда он отвечает правильно. Профессор Гельман добилась этого, воспользовавшись «волшебными» мышками. Каждому ребенку по очереди предлагался ряд задач, в каждой из которых изменялось число мышек и размер пространства между ними. Иногда профессор показывала ребенку двух мышек, расположенных далеко друг от друга, напротив трех мышек, посаженных очень близко. Иногда она показывала мышек, расставленных рядами одинаковой длины. Она просила ребенка выбрать дощечку, на которой было больше мышек – дощечку-победительницу. Победительницей всегда оказывалась дощечка с тремя мышками – не важно, как именно расставленными, а проигравшей всегда была пластинка с двумя мышками. Когда ребенок выполнял задачу правильно, он получал награду.
В сущности, профессор научила детей понимать, что число – это то измерение, которое в этой задаче важно. Затем она старалась запутать детей (это один из любимых приемов психологов!), чтобы они продемонстрировали ей, что успели узнать о числах. Она незаметно («с помощью волшебства») убирала одну мышку из конца ряда или из его центра, оставляя ряды равными по длине или плотности, но теперь на дощечках было одинаковое число мышек. Дети реагировали удивлением