Жизнь проста. Как бритва Оккама освободила науку и стала ключом к познанию тайн Вселенной. Джонджо Макфадден. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джонджо Макфадден
Издательство: Азбука-Аттикус
Серия:
Жанр произведения:
Год издания: 2021
isbn: 978-5-389-23186-3
Скачать книгу
type="note">[143]. Однако самое важное достижение его и других Оксфордских калькуляторов – это определение скорости в виде отношения расстояния и времени. Аристотель никогда не делал попыток выработать математическое выражение, поскольку рассматривал движение как сложное понятие, включающее изменения места, времени, местонахождения и положения, в которых он видел самостоятельные и потому несопоставимые категории. Оксфордские калькуляторы, образно говоря, размотали веревку Оккама и определили скорость, разделив расстояние, которое проходит объект, на время, которое он затрачивает. Это открытие принято приписывать Галилею[144], однако на самом деле его придумали Оксфордские калькуляторы за три века до него.

КАК БРИТВА ОККАМА ПОМОГАЛА ОТКРЫВАТЬ НОВЫЕ ЗАКОНЫ

      Имея за плечами опыт математического описания скорости, Хейтсбери и его коллеги продолжили работу и открыли первый закон современной науки – теорему о средней скорости. Согласно этой теореме, расстояние, которое проходит объект, начиная движение из состояния покоя и двигаясь с равномерным ускорением, равно расстоянию, которое преодолел бы этот же объект за то же время, двигаясь со средней скоростью. Например, если ослик, находящийся в состоянии покоя, начнет двигаться, равномерно увеличивая скорость до десяти миль в час, то за час пути он пройдет то же расстояние, как если бы он не спеша трусил в течение часа с равномерной скоростью пять миль в час – в обоих случаях ослик преодолеет расстояние пять миль.

      Научные и математические законы чрезвычайно важны для нашего рассказа, поскольку в их четких формулировках ясно прослеживается принцип работы бритвы Оккама. Напомню утверждение Эйнштейна, которое я приводил во введении: «Важнейшая цель науки – из наименьшего числа гипотез или аксиом логически получить дедуктивным путем максимум реальных результатов»[145],[146]. Физические законы оптики, механики, термодинамики служат наглядным примером того, как можно «получить максимум реальных результатов», опираясь на простые «гипотезы и аксиомы». Чтобы оценить их значение, представьте себе, как бы ответил Аристотель на ваш вопрос о том, какое расстояние пройдет ослик за один час, если он начнет движение из состояния покоя, равномерно ускоряясь до скорости десять миль в час. Он, вероятно, сказал бы, что все зависит от того, из чего сделан ослик, какую форму он имеет, что является перводвигателем и какова конечная причина движения, а еще к каким категориям относятся эти причины. Ослик, скорее всего, испустил бы дух прежде, чем дослушал Аристотеля до конца.

      А вот если бы этот вопрос был задан Хейтсбери и его коллегам, они бы ответили, что для этого надо разделить значение конечной скорости на два, а затем умножить полученную величину на время, которое было затрачено на достижение этой скорости. Более того, если бы вы несколько изменили вопрос и спросили, какое расстояние пройдет коза, корова, комета, школяр или пущенная из лука стрела – одним словом, объекты, состоящие из разных субстанций и принадлежащие к разным категориям


<p>144</p>

Определение скорости взято из Википедии, см. https://en.wikipedia.org/wiki/Speed#Historical_definition – Примеч. авт.

<p>145</p>

Цит. по: Эйнштейн А. Проблема пространства, эфира и поля в физике.

<p>146</p>

Barnett L. and Einstein A. The Universe and Dr Einstein. Courier Corporation, 2005.