5
Пламя разгорается
Мы возвращаемся в Оксфорд, где идеи Уильяма высекли искру, от которой, пусть и ненадолго, разгорелось ослепительное пламя научной мысли, охватившее залы и библиотеки университетских колледжей. Нам до сих пор не совсем ясно, в каком из них учился Уильям, но скорее всего, это был Мертон, один из старейших колледжей, который был основан специально для студентов богословия за пятьдесят лет до того, как Уильям появился в Оксфорде. Даже после того как Уильям спешно покинул Оксфорд, его идеи продолжали витать в Мертоне, хотя их автор уже был объявлен еретиком. Например, в 1347 году член совета колледжа магистр Саймон Ламбурн передал в Мертон-колледж собрание сочинений Оккама с комментариями автора к «Четырем книгам сентенций» Петра Ломбардского[133]. Самое примечательное, что в течение нескольких десятилетий после отъезда Уильяма в Оксфорде появились Оксфордские, или Мертонские, калькуляторы – группа ученых, которая прославилась не богословскими идеями, а революционным применением математики в естественных науках. Вдохновением для них, скорее всего, послужил Оккам.
Никто из Оксфордских калькуляторов прямо не ссылается на Уильяма и его работы, поскольку в то время он обвинялся в ереси и был отлучен от церкви. Однако, учитывая увлечение Оккама математикой, в их работах очевидно его влияние.
Напомню, что Аристотель стремился категоризировать мир. Он распределил универсалии по десяти категориям, среди которых субстанция (сущность), количество, качество, время, место, страдание (претерпевание), действие и т. д. Затем он усложнил задачу, отказавшись от применения одних и тех же рассуждений или доводов сразу к нескольким категориям. Например, категория количества включала числа, но не субстанции, а категория качества использовалась для описания материальных объектов (объектов, обладающих сущностью), в том числе их свойств – например, камень имеет обыкновение падать, дым подниматься, лед таять. Аристотель утверждал, что в каждой категории действуют свои правила, в частности, математические законы применимы лишь к нематериальным объектам (объектам, не обладающим сущностью), например геометрическим фигурам (круг, треугольник) или небесным телам. Как пишет Аристотель, «между тем другие математические науки не исследуют никакой сущности, например арифметика и геометрия»[134][135]. Таким образом, с помощью чисел и геометрии нельзя объяснить степень нагрева предмета или траекторию движения стрелы. В этом случае следует оперировать терминами категории качества, такими как теплый или холодный, криволинейный или прямолинейный.
Математика, бесспорно, является фундаментом современной науки. Без нее не было бы физики. А еще она является важнейшим инструментом проведения исследований в химии, биологии, геологии и метеорологии. В средневековом мире эти отрасли существовали в рамках единой науки – естествознания, но никак не пересекались с математикой, поскольку