Цифры врут. Как не дать статистике обмануть себя. Том Чиверс. Читать онлайн. Newlib. NEWLIB.NET

Автор: Том Чиверс
Издательство: Individuum / Popcorn books
Серия:
Жанр произведения:
Год издания: 2021
isbn: 978-5-6046877-9-6
Скачать книгу
а еще 100 – вне их. В среднем каждый больной в домах престарелых заражает троих, а вне их – двоих. Тогда коэффициент распространения (среднее число людей, зараженных одним носителем инфекции) равен 2,5.

      Затем объявляется локдаун. Количество заболевших снижается, и R тоже снижается. Но – и это важный момент – в домах престарелых снижение не такое сильное, как вне их. Теперь в них 90 человек, каждый передает инфекцию в среднем 2,9 людей, а в стране 10 заболевших, передающих вирус в среднем одному человеку. Поэтому теперь R = 2,71. Он вырос! Но в обеих группах снизился.[4]

      Как правильно это рассматривать? Опять-таки ответ неочевиден. Вас может в первую очередь волновать значение R, потому что на самом деле наши две эпидемии не разделяются. Тем не менее ситуация явно не сводится к утверждению: когда R растет, это плохо.

      Парадокс Симпсона – один из примеров более общей проблемы, называемой «экологической ошибкой», когда вы пытаетесь судить об отдельных людях или подгруппах по средним для группы значениям. Экологическая (или популяционная) ошибка встречается чаще, чем можно предположить. Читателям и журналистам важно понимать, что общая величина не всегда отражает реальность, а чтобы досконально разобраться в ситуации, следует копать глубже.

      Глава 2

      Отдельные наблюдения

      В 2019 году сразу две газеты, Daily Mail и Mirror, написали о женщине, которая, узнав, что у нее терминальная стадия рака, прошла альтернативное лечение в мексиканской клинике. Ее терапия «включала гипербарическую оксигенацию, общую гипотермию, инфракрасное облучение, воздействие импульсного электромагнитного поля, кофейные клизмы, посещения сауны и внутривенное введение витамина С». И опухоль резко уменьшилась.

      Мы предполагаем, что большинство читателей этой книги относятся к подобным историям со здоровым скептицизмом. Но этот случай – прекрасная отправная точка для понимания того, как числа могут вести к неверным выводам. На первый взгляд кажется, что здесь нет никаких чисел, однако одно неявно присутствует – единица. История одного человека служит основой для доказательства утверждения. Это пример того, что мы называем отдельным наблюдением (anecdotal evidence).

      У таких доказательств плохая репутация, но назвать все такие рассуждения принципиально неверными нельзя. Как мы обычно решаем, где правда, а где ложь? Очень просто: проверяем утверждение сами или слушаем людей, проверивших его.

      Если мы прикоснулись к горячей сковородке и обожглись, то мы, опираясь на этот единственный случай, приходим к выводу, что горячие сковородки обжигают и всегда будут обжигать и что их лучше не трогать. Более того: если кто-то скажет, что сковородка горячая и что мы обожжемся, если ее коснемся, мы легко в это поверим. Нас убеждает опыт других людей. В этом примере можно обойтись без всякого статистического анализа.

      В жизни такой подход почти всегда срабатывает. Обучение на базе рассказа или личного опыта – когда человек делает вывод на основе отдельного наблюдения – довольно эффективно.


<p>4</p>

Рассчитывается так: (90 × 2,9 + 10 × 1) / 100 = 2,1. – Прим. авт.