Подобный «хаос» в действительности имеет довольно точное техническое определение, но не будем его приводить. Вместо этого просто неформально укажем на два требования, которые математики предъявляют к употреблению этого слова: 1) модель должна быть детерминированной, то есть в ней не может быть случайности; и 2) прогнозы модели чрезвычайно чувствительны к начальным условиям.
Чтобы увидеть, как именно дискретная логистическая модель проявляет свою хаотичность, например, зафиксировав
Рисунок 1.7 Результаты роста значения
Обратите внимание на тот факт, что, хотя популяции и изменяются похожим образом в течение нескольких первых шагов, после этого они становятся полностью различимыми. В результате для такой пары значений наблюдается чрезвычайная чувствительность модели к начальным условиям. Конечно, это не является доказательством чего-либо, и вполне возможно, что такое поведение было просто последствием череды ошибок компьютерного округления. Однако математиками строго доказано, что это подлинный «хаос».
Возможность хаотического поведения в такой простой популяционной модели, как дискретная логистическая, вызвала большой ажиотаж в 1970-х годах, когда она была впервые опубликована в работе Мэй от 1978 года. Если бы такая простая модель смогла воспроизводить сложное поведение любой динамической системы, то от гипотезы о том, что сложная динамическая система может возникать лишь из сложных взаимодействий и флуктуаций окружающей среды пришлось бы отказаться. Дальнейшая работа Мэй с сотоварищами по вычислению соответствующих значений таких параметров, как