сделать вывод о том, что
отдалилось от
приблизилось к
. Если теперь проанализировать, как меняется
на всех достаточно малых значениях
, то можно будет определить, является ли исследуемое равновесие стабильным или нестабильным. Растущее отклонение означает нестабильность, в то время как уменьшающееся означает стабилизацию. Здесь не учитывается знак отклонения, рассматривая лишь абсолютное значение. Знак стоит принимать во внимание в последнюю очередь, так как он не имеет прямого отношения к вопросу о стабильности.
Пример. Рассмотрим модель
, с которой уже сталкивались ранее и знаем, что равновесие достигается в точках
и 10. В первую очередь исследуем
, которое, судя по графику, стабилен на основании численных экспериментов. Подстановка значений
и
в уравнение для модели приводит к следующему выводу:
является очень малым числом, меньше 1, следовательно,
. Таким образом
.
Это означает, что значения
действительно стабильное значение.
Можно смотреть на число 0.3 как на «коэффициент растяжения», который говорит о том, насколько стремительно меняются отклонения от равновесия с течением времени. В данном примере, поскольку растягиваемся в менее чем 1 раз, на деле имеет место сжатие.
Процесс, описанный в примере выше, называется линеаризацией модели в равновесии, потому что сначала фокусируем внимание вблизи равновесия путем линейной замены
. Остается только линейная модель, аппроксимирующая исходную модель. Линейные модели, как видели, легко понять, потому что они производят либо экспоненциальный рост, либо распад.
Вопросы для самопроверки:
– Выполните аналогичный анализ для другого равновесия этой модели, чтобы показать, что оно нестабильно. Каким будет коэффициент растяжения, на который расстояния от точки равновесия растут с каждым шагом времени?
В результате аналогичного анализа в окрестности 0 обнаружится, что линеаризация при
дает
неустойчиво. В общем случае, когда коэффициент растяжения больше 1 по абсолютной величине, равновесие нестабильно. И наоборот, когда оно меньше 1 по абсолютной величине, равновесие стабильно.
Из курса