49 49. Yanagida, T., Kamada, K., Fujimoto, Y. et al. (2010). Growth and scintillation properties of Pr doped YAP with different Pr concentrations. Nucl. Instrum. Methods A 623: 1020–1023.
50 50. Dorenbos, P., van Eijk, C.W.E., Hollander, R.W. et al. (1990). Scintillation properties of Nd3+ doped LaF3 crystals. IEEE Trans. Nucl. Sci. 37: 119–123.
51 51. Sturm, B.W., Cherepy N.J., Drury, O.B. et al. (2011) Characteristics of undoped and europium‐doped SrI2 scintillator detectors. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (SS/MIC 2011), 7
52 52. Shimizu, Y., Minowa, M., Suganuma, W. et al. (2006). Dark matter search experiment with CaF2(Eu) scintillator at Kamioka Observatory. Phys. Lett. B. 633: 195–200.
53 53. Murray, R.B. (1958). Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons. Nucl. Instrum. Methods 2: 237–248.
54 54. Yanagida, T., Kawaguchi, N., and Fujimoto, Y. (2011). Basic study of Europium doped LiCaAlF6 scintillator and its capability for thermal neutron imaging application. Opt. Mater. 33: 1243–1247.
55 55. Okada, G., Ueda, J., Tanabe, S. et al. (2014). Samarium‐doped oxyfluoride glass‐ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron. J. Am. Ceram. Soc. 97: 2147–2153.
56 56. Robbins, D.J. (1980). On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127: 2694–2702.
57 57. Lempicki, A. and Wojtowicz, A.J. (1994). Fundamental limitations of scintillators. J. Lumin. 60 and 61: 942–947.
58 58. Mikhailik, V.B. and Kraus, H. (2010). Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi B 247: 1583–1599.
59 59. Dorenbos, P. (2002). Light output and energy resolution of Ce3+‐doped scintillators. Nucl. Instrum. Methods Phys. Res. A 486: 208–213.
60 60. Alekhin, M.S., de Haas, J.T.M., Khodyuk, I.V. et al. (2013). Improvement of γ‐ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co‐doping. Appl. Phys. Lett. 102: 161915.
61 61. Stand, L., Zhuravleva, M., Lindsey, A. et al. (2013) Potassium Strontium Iodide: A New High Light Yield Scintillator with 2.4% Energy Resolution, 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), conference record
62 62. Moszyński, M., Zalipska, J., Balcerzyk, M. et al. (2002). Intrinsic energy resolution of NaI(Tl). Nucl. Instrum. Methods Phys. Res. A. 484: 459–469.
63 63. van Loef, E.V.D., Dorenbos, P., Kramer, K. et al. (2001). Scintillation properties of LaCl3: Ce3+ crystals: fast, efficient, and high‐energy resolution scintillators. IEEE Trans. Nucl. Sci. 48: 341–345.
64 64. Kelley, G.G., Bell, P.R., Davis, R.C. et al. (1956). Intrinsic scintillator resolution. IRE Trans. Nucl. Sci. 3: 57–58.
65 65. Syntfeld‐Kazuch, A., Swiderski, L., Czarnacki, W. et al. (2006). Non‐proportionality and Energy Resolution of CsI(Tl). IEEE Nuclear Science Symposium Conference Record 2006: N30–N134.
66 66. Chewpraditkula, W. and Moszynski, M. (2011). Scintillation properties of Lu3Al5O12, Lu2SiO5 and LaBr3 crystals activated with cerium. Phys. Proc. 22: 218–226.
67 67. Uchiyama, Y., Kouda, M., Tanihata, C. et al. (2001). Study of energy response of Gd2SiO5:Ce3+ scintillator for the ASTRO‐E hard X‐ray detector. IEEE Trans. Nucl. Sci. 48: 379–384.
68 68. Dorenbos, P. (2010). Fundamental limitations in the performance of Ce3+‐, Pr3+‐, and Eu2+‐activated scintillators. IEEE Trans. Nucl. Sci. 57: 1162–1167.
69 69. Gundacker, S., Turtos, R.M., Kratochwil, N. et al. (2020). Experimental time resolution limits of modern SiPMs and TOF‐PET detectors exploring different scintillators and Cherenkov emission. Phys. Med. Biol. 65: 1–20.
70 70. Matsuzawa, T., Aoki, Y., Takeuchi, T. et al. (1996). A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143: 2670–2673.
71 71. Nesshi‐Tedaldi, F., Dissertori, G., Lecomte, P. et al. (2009). Studies of Cerium floride, LYSO and lead tungstate crystals expose to high hadron fluences, IEEE NSS MIC 2009 Conference record N32‐3
72 72. Grescovich, G., Cusano, D., Hoffman, D. et al. (1992). Ceramic scintillators for advanced, medical X‐ray‐detectors. Am. Ceram. Soc. Bull. 71: 1120–1130.
73 73. Tanaka, M., Hara, K., Kim, S. et al. (2002). Applications of cerium‐doped gadolinium silicate Gd2SiO5:Ce scintillator to calorimeters in high‐radiation environment. Nucl. Instrum. Methods Phys. Res. A. 404: 283–294.
74 74. Kawade, K., Fukatsu, K., Itow, Y. et al. (2011). Study of radiation hardness of Gd2SiO5 scintillator for heavy ion beam. JINST 6: 1–12.
75 75. Yanagida, T., Fujimoto, Y., and Watanabe, K. (2014). Dopant concentration ependence on radiation induced positive hysteresis of Ce:GSO and Ce:GSOZ. Radiat. Meas. 61C: 16–20.
76 76. Yanagida, T., Fujimoto, Y., Koshimizu, M. et al. (2014). Positive hysteresis of Ce‐doped GAGG scintillator. Opt. Mater. 36: 2016–2019.
77 77. Yanagida, T., Fujimoto, Y., Yamaji, A. et al. (2013). Study of the correlation of scintillation decay and emission wavelength. Radiat. Meas. 55: 99–102.
78 78. Melcher, C.L., Manente, R.A., and Schweitzer, J.S. (1989). Applicability of barium fluoride and cadmium tungstate scintillators for well logging. IEEE Trans. Nucl. Sci. 36: 1188–1192.
79 79. Kitis, G., Gomez‐Ros, J.M., and Tuyn, J.W.N. (1998). Thermoluminescence glow‐curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 31: 2636–2641.
80 80. Chen, R. and Winer, S.A.A. (1970). Effects of various heating rates on glow curves. J. Appl. Phys. 41: 5227–5232.
81 81. Bos, A.J.J. (2007). Theory of thermoluminescence. Radiat. Meas. 41: S45–S56.
82 82. Yanagida, T., Okada, G., and Kawaguchi, N. (2019). Ionizing‐radiation‐induced storage‐luminescence for dosimetric applications. J. Lumin. 207: 14–21.
83 83. Grimmeis, H.G. and Ledebo, L.‐A. (1974). Photo‐ionization of deep impurity levels in semiconductors with non‐parabolic bands. J. Phys. C Sol. Stat. Phys. 8: 2615–2626.
84 84. Grimmeis, H.G. and Ledebo, L.‐A. (1975). Spectral distribution of photoionization cross sections by photoconductivity measurements. J. Appl. Phys. 46: 2155.
85 85. Lucovsky, G. (1965). On the photoionization of deep impurity centers in semiconductors. Solid State Commun. 3: 299–302.
86 86. Yanagida, T., Fujimoto, Y., Watanabe, K. et al. (2014). Scintillation and optical stimulated luminescence of Ce doped CaF2. Radiat. Meas. 71: 162–165.
87 87. Yanagida, T. (2016). Ionizing radiation induced emission: scintillation and storage‐type luminescence. J. Lumin. 169: 544–548.
88 88. Yanagida, T. (2018). Inorganic scintillating materials and scintillation detectors. Proc. Japan Acad. B. 94: 75–97.
89 89. Yanagida, T., Kamada, K., Fujimoto, Y. et al. (2011). Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators. Nucl. Instrum. Methods A 631: 54–57.
90 90. Kawaguchi, N., Yanagida, T., Fujimoto, Y. et al. (2013). Neutron detection with LiCaAlF6 scintillator doped with 3d‐transition metal ions. Radiat. Meas. 55: 128–131.
91 91. Blankespoor, S.C., Derenzo, S.E., Moses, W.W. et al. (1994). Characterization of a pulsed X‐ray source for fluorescent lifetime measurements. IEEE Trans. Nucl. Sci. 41: 698–702.
92 92. Derenzo, S.E., Weber, M.J., Moses, W.W. et al. (2000). Measurements of the intrinsic rise times of common inorganic scintillators. IEEE Trans. Nucl. Sci. IEEE 47: 860–864.
93 93. Yanagida, T., Fujimoto, Y., Yoshikawa,