6 6 Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016; 116(22):13279–412.
7 7 Wei, Q., Pötzsch, R., Liu, X., Komber, H., Kiriy, A., Voit, B., et al. Hyperbranched polymers with high transparency and inherent high refractive index for application in organic light‐emitting diodes. Adv. Funct. Mater. 2016; 26(15):2545–53.
8 8 Fei, N., Wei, Q., Cao, L., Bai, Y., Ji, H., Peng, R., et al. A symmetric nonpolar blue AIEgen as nondoped fluorescent OLED emitter with low efficiency roll‐off. Org. Electron. 2020; 78:105574.
9 9 Li, Y. G., Wei, Q., Cao, L., Fries, F., Cucchi, M., Wu, Z. B., et al. Organic light‐emitting diodes based on conjugation‐induced thermally activated delayed fluorescence polymers: interplay between intra‐ and intermolecular charge transfer states. Front. Chem. 2019; 7:12.
10 10 Yang, R., Guan, Q., Liu, Z., Song, W., Hong, L., Lei, T., et al. A methodological study on tuning the thermally activated delayed fluorescent performance by molecular constitution in acridine–benzophenone derivatives. Chem. Asian J. 2018; 13(9):1187–91.
11 11 Im, Y., Byun, S. Y., Kim, J. H., Lee, D. R., Oh, C. S., Yook, K. S., et al. Recent progress in high‐efficiency blue‐light‐emitting materials for organic light‐emitting diodes. Adv. Funct. Mater. 2017; 27(13):1603007–n/a.
12 12 Song, J., Lee, H., Jeong, E. G., Choi, K. C., Yoo, S. Organic light‐emitting diodes: pushing toward the limits and beyond. Adv. Mater. (Deerfield Beach, Fla). 2020:e1907539.
13 13 Wei, Q., Ge, Z., Voit, B. Thermally activated delayed fluorescent polymers: structures, properties, and applications in OLED devices. Macromol. Rapid Commun. 2019; 40(1):1800570.
14 14 Mei, J., Hong, Y., Lam, J. W. Y., Qin, A., Tang, Y., Tang, B. Z. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014; 26(31):5429–79.
15 15 Sliney, D. H. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination). Photochem. Photobiol. 2007; 83(2):425–32.
16 16 Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 1977; 2(1):7–11.
17 17 Karzazi, Y. Organic light emitting diodes: devices and applications. J. Mater. Environ. Sci. 2014; 5(1):1–12.
18 18 Forrest, S. R., Bradley, D. D. C., Thompson, M. E. Measuring the efficiency of organic light‐emitting devices. Adv. Mater. 2003; 15(13):1043–8.
19 19 Roose, J., Tang, B. Z., Wong, K. S. Circularly‐polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small. 2016; 12(47):6495–512.
20 20 Baldo, M. A., Adachi, C., Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Physical Review B. 2000; 62(16):10967–77.
21 21 Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., Adachi, C. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 2009; 21(47):4802–6.
22 22 Endo, A., Sato, K., Yoshimura, K., Kai, T., Kawada, A., Miyazaki, H., et al. Efficient up‐conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011; 98(8):083302.
23 23 Deaton, J. C., Switalski, S. C., Kondakov, D. Y., Young, R. H., Pawlik, T. D., Giesen, D. J., et al. E‐type delayed fluorescence of a phosphine‐supported Cu2(μ‐NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 2010; 132(27):9499–508.
24 24 Albrecht, K., Matsuoka, K., Fujita, K., Yamamoto, K. Carbazole dendrimers as solution‐processable thermally activated delayed‐fluorescence materials. Angew. Chem. Int. Ed. 2015; 54(19):5677–82.
25 25 Kaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015; 6:8476.
26 26 Xiao, L., Su, S.‐J., Agata, Y., Lan, H., Kido, J. Nearly 100% internal quantum efficiency in an organic blue‐light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 2009; 21(12):1271–4.
27 27 Rizzo, F., Cucinotta, F. Recent developments in AIEgens for non‐doped and TADF OLEDs. Israel J. Chem. 2018; 58(8):874–88.
28 28 Li, W., Liu, D., Shen, F., Ma, D., Wang, Z., Feng, T., et al. A twisting donor–acceptor molecule with an intercrossed excited state for highly efficient, deep‐blue electroluminescence. Adv. Funct. Mater. 2012; 22(13):2797–803.
29 29 Zhang, S., Li, W., Yao, L., Pan, Y., Shen, F., Xiao, R., et al. Enhanced proportion of radiative excitons in non‐doped electro‐fluorescence generated from an imidazole derivative with an orthogonal donor–acceptor structure. Chem. Commun. 2013; 49(96):11302–4.
30 30 Li, W., Pan, Y., Xiao, R., Peng, Q., Zhang, S., Ma, D., et al. Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge‐transfer excited state. Adv. Funct. Mater. 2014; 24(11):1609–14.
31 31 Yao, L., Zhang, S., Wang, R., Li, W., Shen, F., Yang, B., et al. Highly efficient near‐infrared organic light‐emitting diode based on a butterfly‐shaped donor–acceptor chromophore with strong solid‐state fluorescence and a large proportion of radiative excitons. Angew. Chem. Int. Ed. 2014; 53(8):2119–23.
32 32 Kido, J., Iizumi, Y. Fabrication of highly efficient organic electroluminescent devices. Appl. Phy. Lett. 1998; 73(19):2721–3.
33 33 Obolda, A., Peng, Q., He, C., Zhang, T., Ren, J., Ma, H., et al. Triplet–polaron‐interaction‐induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs. Adv. Mater. 2016; 28(23):4740–6.
34 34 Peng, Q., Obolda, A., Zhang, M., Li, F. Organic light‐emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 2015; 54(24):7091–5.
35 35 Tang, X., Hu, Y., Jia, W., Pan, R., Deng, J., Deng, J., et al. Intersystem crossing and triplet fusion in singlet‐fission‐dominated rubrene‐based OLEDs under high bias current. ACS Appl. Mater. Interfaces. 2018;10:1948−56.
36 36 Yang, J., Chi, Z. G., Zhu, W. H., Tang, B. Z., Li, Z. Aggregation‐induced emission: a coming‐of‐age ceremony at the age of eighteen. Sci. China‐Chem. 2019; 62(9):1090–8.
37 37 Qiu, Z., Yang, Z., Chen, W.‐C., Xing, L., Hu, S., Ji, S., et al. Alkoxy chain regulated stimuli‐responsive AIE luminogens based on tetraphenylethylene substituted phenanthroimidazoles and non‐doped OLEDs with negligible efficiency roll‐off. J. Mater. Chem. C. 2020; 8(12):4139–47.
38 38 Zhan, Y., Yang, Z., Tan, J., Qiu, Z., Mao, Y., He, J., et al. Synthesis, aggregation‐induced emission (AIE) and electroluminescence of carbazole‐benzoyl substituted tetraphenylethylene derivatives. Dyes Pigm. 2020; 173:107898.
39 39 Kim, J. Y., Yasuda, T., Yang, Y. S., Adachi, C. Bifunctional star‐burst amorphous molecular materials for OLEDs: achieving highly efficient solid‐state luminescence and carrier transport induced by spontaneous molecular orientation. Adv. Mater. 2013; 25(19):2666–71.
40 40 Zhan, X., Wu, Z., Lin, Y., Xie, Y., Peng, Q., Li, Q., et al. Benzene‐cored AIEgens for deep‐blue OLEDs: high performance without hole‐transporting layers, and unexpected excellent host for orange emission as a side‐effect. Chem. Sci. 2016; 7(7):4355–63.
41 41 Liu, F., Liu, H., Tang, X., Ren, S., He, X., Li, J., et al. Novel blue fluorescent materials for high‐performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index. Nano Energy. 2020; 68:104325.
42 42 Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., et al. Light‐emitting diodes based on conjugated