Systems Biogeochemistry of Major Marine Biomes. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119554363
Скачать книгу
L.A. and Gage, J.D. (1998). Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep Sea Research Part II: Topical Studies in Oceanography 45 (1–3): 129–163. https://doi.org/10.1016/S0967‐0645 (97)00085‐4

      93 Levin, L.A. and Gallo, N.D. (2019). The significance of ocean deoxygenation for continental margin benthic and demersal biota. In:, Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions (eds. D. Laffoley and J.M. Baxter), 341–361). IUCN.

      94 Levin, L.A., Huggett, C.L. and Wishner, K.F. (1991). Control of deep‐sea benthic community structure by oxygen and organic‐matter gradients in the eastern Pacific Ocean. Journal of Marine Research, 49 (4), 763–800. https://doi.org/10.1357/002224091784995756

      95 Levin, L.A., Ekau, W., Gooday, A.J., et al. (2009). Effects of natural and human‐induced hypoxia on coastal benthos. Biogeosciences 6 (10): 2063–2098. https://doi.org/10.5194/bg‐6‐2063‐2009 and Levin, L.A., Mendoza, G.F., Gonzalez, J.P., andet al. (2010). Diversity of bathyal macrofauna on the northeastern Pacific margin: the influence of methane seeps and oxygen minimum zones. Marine Ecology 31 (1): 94–110. https://doi.org/10.1111/j.1439‐0485.2009.0033

      96 Lin, Q., Wang, J., Algeo, T.J. et al. (2016). Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate‐methane transition zone of the northern South China Sea. Marine Geology 379: 100–108. https://doi.org/10.1016/j.margeo.2016.05.016

      97 Littke, R., Lückge, A. and Welte, D.H. (1997). Quantification of organic matter degradation by microbial sulphate reduction for Quaternary sediments from the northern Arabian Sea. Naturwissenschaften 84 (7): 312–315. https://doi.org/10.1007/s001140050402

      98 Lückge, A., Ercegovac, M., Strauss, H. et al. (1999). Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea. Marine Geology 158 (1–4): 1–13. https://doi.org/10.1016/S0025‐3227 (98)00191‐1

      99 Lückge, A., Horsfield, B., Littke, R. et al. (2002). Organic matter preservation and sulfur uptake in sediments from the continental margin off Pakistan. Organic Geochemistry 33 (4): 477–488. https://doi.org/10.1016/S0146‐6380 (01)00171‐1

      100 Lüke, C., Speth, D.R., Kox, M.A. et al. (2016). Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ 4: p.e1924. https://doi.org/10.7717/peerj.1924

      101 Madhupratap, M., Prasanna Kumar S., Bhattathiri P.M.A. et al. (1996). Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384: 549–552. https://doi.org/10.1038/384549a0

      102 Madigan, M.T., Martinko J.M. and Parker, J. (2000). Brock Biology of Microorganisms. Hoboken, NJ: Prentice Hall, Inc.

      103 Maltby, J., Sommer, S., Dale, A.W. et al. (2016). Microbial methanogenesis in the sulfate‐reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences 13 (1): 283–299. https://doi.org/10.5194/bg‐13‐283‐2016

      104 Mandal, S., Bhattacharya, S., Roy, C. et al. (2020) Cryptic roles of tetrathionate in the sulfur cycle of marine sediments: microbial drivers and indicators, Biogeosciences 17: 4611–4631, https://doi.org/10.5194/bg‐17‐4611‐2020, 2020

      105 Markovic, S., Paytan, A. and Wortmann, U.G. (2015). Pleistocene sediment offloading and the global sulfur cycle. Biogeosciences, 12 (10), 3043–3060. https://doi.org/10.5194/bg‐12‐3043‐2015

      106 Mazumdar, A., Peketi, A., Dewangan, P. et al. (2009). Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Marine Geology 267 (1–2): 71–85. https://doi.org/10.1016/j.margeo.2009.09.005

      107 Mazumdar, A., Peketi, A., Joao, H. et al. (2012). Sulfidization in a shallow coastal depositional setting: diagenetic and palaeoclimatic implications. Chemical Geology 322: 68–78. https://doi.org/10.1016/j.chemgeo.2012.06.005

      108 McCrearyJr, J.P., Yu, Z., Hood, R.R. andet al. (2013). Dynamics of the Indian‐Ocean oxygen minimum zones. Progress in Oceanography 112: 15–37. https://doi.org/10.1016/j.pocean.2013.03.002

      109 Middelburg, J.J. and Levin, L.A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6 (7): 1273–1293. https://doi.org/10.5194/bg‐6‐1273‐2009

      110 Moffitt, S.E., Hill, T.M., Roopnarine, P.D. et al. (2015). Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences 112 (15): 4684–4689. https://doi.org/10.1073/pnas.1417130112

      111 Molina, V., Farías, L., Eissler, Y. et al. (2005). Ammonium cycling under a strong oxygen gradient associated with the Oxygen Minimum Zone off northern chile (~ 23 S). Marine Ecology Progress Series 288: 35–43. https://doi.org/10.3354/meps288035

      112 Molina, V., Ulloa, O., Farías, L. et al. and (2007). Ammonia‐oxidizing β‐proteobacteria from the oxygen minimum zone off northern Chile. Applied and Environmental Microbiology 73 (11): 3547–3555. https://doi.org/10.1128/AEM.02275‐06

      113 More, K.D., Orsi, W.D., Galy, V. et al and. (2018). A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth and Planetary Science Letters 496: 248–256. https://doi.org/10.1016/j.epsl.2018.05.045

      114 Mossmann, J.R., Aplin, A.C., Curtis, C.D. et al. (1991). Geochemistry of inorganic and organic sulphur in organic‐rich sediments from the Peru Margin. Geochimica et Cosmochimica Acta 55 (12): 3581–3595. https://doi.org/10.1016/0016‐7037(91)90057‐C

      115 Müller, F.L. (2018). Exploring the potential role of terrestrially derived humic substances in the marine biogeochemistry of iron. Frontiers in Earth Science 6: 159. https://doi.org/10.3389/feart.2018.00159

      116 Mullins, H.T., Thompson, J.B., McDougall, K. et al. (1985). Oxygen‐minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13 (7): 491–494. https://doi.org/10.1130/0091‐7613 (1985)13<491:OZEEEF>2.O;2

      117 Naik, R., Naqvi, S.W.A. and Araujo, J. (2017). Anaerobic carbon mineralisation through sulphate reduction in the inner shelf sediments of eastern Arabian Sea. Estuaries and Coasts 40 (1): 134–144. https://doi.org/10.1007/s12237‐016‐0130‐0

      118 Naqvi, S.W.A. (1991). Geographical extent of denitrification in the Arabian Sea in relation to physical processes. Oceanologica Acta 14: 281–290.

      119 Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V. et al. (2000). Increased marine production of N2O due to intensifying anoxia