Systems Biogeochemistry of Major Marine Biomes. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119554363
Скачать книгу
Naqvi, S.W.A. and Codispoti, L.A. (2005). The nitrogen cycle in the Arabian Sea. Progress in Oceanography 65: 145–158. https://doi.org/10.1016/j.pocean.2005.03.002

      10 Banse, K., Naqvi, S.W.A. and Narvekar, P. (2014). Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales. Biogeosciences 11 (8): 2237–2261. https://doi.org/10.5194/bg‐11‐2237‐2014

      11 Banse, K., Naqvi, S.W.A. and Postel, J.R. (2017). A zona incognita surrounds the secondary nitrite maximum in open‐ocean oxygen minimum zones. Deep Sea Research Part I: Oceanographic Research Papers 127: 111–113. https://doi.org/10.1016/j.dsr.2017.07.004

      12 Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A. et al. (2006). Climate‐driven trends in contemporary ocean productivity. Nature 444 (7120): 752–755. https://doi.org/10.1038/nature05317

      13 Beman, J.M., Shih, J.L. and Popp, B.N. (2013). Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. The ISME Journal 7 (11): 2192–2205. https://doi.org/10.1038/ismej.2013.96

      14 Berner, R.A. (1985). Sulphate reduction, organic matter decomposition and pyrite formation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 315 (1531): 25–38. https://doi.org/10.1098/rsta.1985.0027

      15 Berner, R.A. and Westrich, J.T. (1985). Bioturbation and the early diagenesis of carbon and sulfur: American Journal of Science 285: 193–206. https://doi.org/10.2475/ajs.285.3.193

      16 Bernhard, J.M. and Bowser, S.S. (2008). Peroxisome proliferation in foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure? 1. Journal of Eukaryotic Microbiology 55 (3): 135–144. https://doi.org/10.1111/j.1550‐7408.2008.0031

      17 Bertagnolli, A.D. and Stewart, F.J. (2018). Microbial niches in marine oxygen minimum zones. Nature Reviews Microbiology 16 (12): 723–729. https://doi.org/10.1038/s41579‐018‐0087‐z

      18 Bhattacharya, S., Mapder, T., Fernandes, S. et al. (2021). Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin. Biogeosciences, 18, 5203–5222. https://doi.org/10.5194/bg‐18‐5203‐2021

      19 Bhattacharya, S., Roy, C., Mandal, S. et al. (2020) Aerobic microbial communities in the sediments of a marine 910 oxygen minimum zone. FEMS Microbiolology Letters 367: fnaa157, 2020. doi: 10.1093/femsle/fnaa157

      20 Boetius, A., Ravenschlag, K., Schubert, C.J. et al. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407 (6804): 623–626. https://doi.org/10.1038/35036572

      21 Bohlen, L., Dale, A.W., Sommer, S. et al. (2011). Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone. Geochimica et Cosmochimica Acta 75 (20): 6094–6111. https://doi.org/10.1016/j.gca.2011.08.010

      22 Böning, P., Brumsack, H.J., Böttcher, M.E. et al. (2004). Geochemistry of Peruvian near‐surface sediments. Geochimica et Cosmochimica Acta 68 (21): 4429–4451. https://doi.org/10.1016/j.gca.2004.04.027

      23 Bopp, L., Le Quéré, C., Heimann, M. et al. (2002). Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16 (2): 6–1. https://doi.org/10.1029/2001GB001445

      24 Böttcher, M.E., Thamdrup, B. and Vennemann, T.W. (2001). Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochimica et Cosmochimica Acta 65: 1601–1609. https://doi.org/10.1016/S0016‐7037(00)00628‐1

      25 Bower, A.S., Johns, W.E., Fratantoni, D.M. et al. (2005). Equilibration and circulation of Red Sea outflow water in the Western Gulf of Aden. Journal of Physical Oceanography 35 (11): 1963–1985. https://doi.org/10.1175/JPO2787.1

      26 Bowles, M.W., Mogollón, J.M., Kasten, S. et al. (2014). Global rates of marine sulfate reduction and implications for sub‐sea‐floor metabolic activities. Science 344 (6186): 889–891. https://doi.org/10.1126/science.1249213

      27 Boyer, T.P., Antonov, J.I., Baranova, O.K. et al. (2013). World Ocean Database 2013. Silver Spring: NOAA.

      28 Breitburg, D., f, L.A., Oschlies, A., Grégoire, M. et al. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371): eaam7240. https://doi.org/10.1126/science. aam7240

      29 Bristow, L.A., Callbeck, C.M., Larsen, M. et al. (2017). N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience 10 (1): 24–29. https://doi.org/10.1038/NGEO2847

      30 Bristow, L.A., Dalsgaard, T., Tiano, L. et al. (2016). Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proceedings of the National Academy of Sciences 113 (38): 10601–10606. https://doi.org/10.1073/pnas.1600359113

      31 Brüchert, V. (1998). Early diagenesis of sulfur in estuarine sediments: the role of sedimentary humic and fulvic acids. Geochimica et Cosmochimica Acta 62 (9): 1567–1586. https://doi.org/10.1016/S0016‐7037(98)00089‐1

      32 Brüchert, V., Jørgensen, B.B., Neumann, K. et al. (2003). Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta 67 (23): 4505–4518. https://doi.org/10.1016/S0016‐7037(98)00089‐1

      33 Bulow, S.E., Rich, J.J., Naik, H.S. et al. (2010). Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers 57 (3): 384–393. https://doi.org/10.1016/j.dsr.2009.10.014

      34 Callbeck, C.M., Lavik, G., Ferdelman, T.G. et al. (2018). Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications 9 (1): 1–11. https://doi.org/10.1038/s41467‐018‐04041‐x

      35 Canfield, D.E. and Thamdrup, B. (1994). The production of 34S‐depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266: 1973–1975. https://doi.org/10.1126/science.11540246

      36 Canfield, D.E., Kristensen, E. and Thamdrup, B. (2005). The sulfur cycle. Advances in Marine Biology 48: 313–381. https://doi.org/10.1016/S0065‐2881(05)48009‐8

      37 Canfield, D.E., Stewart, F.J., Thamdrup, B. et al. (2010). A cryptic sulfur cycle in oxygen‐minimum–zone waters off the Chilean coast. Science 330