Computational Statistics in Data Science. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119561088
Скачать книгу
Figures A B C D E F G H I J K L M N O
Probability 0.2 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02
stat08283fgz001 normal upper E left-bracket upper W right-bracket equals sigma-summation Underscript z element-of upper Z Endscripts normal upper E left-bracket upper W vertical-bar upper Z equals z right-bracket upper P left-bracket upper Z equals z right-bracket

      This calculation is unavailable since there are over 3 trillion partitions in upper Z. However, we can simulate upper Z 1 comma ellipsis comma upper Z Subscript n Baseline equally likely permutations from upper Z and estimate normal upper E left-bracket upper W right-bracket with

StartFraction 1 Over n EndFraction sigma-summation Underscript t equals 1 Overscript n Endscripts normal upper E left-bracket upper W vertical-bar upper Z equals upper Z Subscript t Baseline right-bracket

      Using this sampler, we simulate until the 95% confidence interval length for normal upper E left-bracket upper W right-bracket is below 1. Again, we set n Superscript asterisk Baseline equals 100 and simulate an additional 100 Monte Carlo sample between checking the stopping rule. Now the sequential stopping rule terminates at n equals 5500 with an estimate of 116.1, which is approximately 10 times more efficient than the naive Monte Carlo sampling. The right panel of Figure 1 provides a histogram of the Monte Carlo simulated means.

      7.2 Estimating Risk for Empirical Bayes