Computational Statistics in Data Science. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119561088
Скачать книгу
r greater-than 1 slash c, the finite‐sample bias is positive. Vats and Flegal [27] recommend r equals 3 and c equals 1 slash 2, which induces a positive bias of negative normal upper Gamma slash b offsetting the original bias in the opposite direction. For r equals 1 slash c, this estimator corresponds to the flat‐top batch means estimator of Liu and Flegal [28]. Under polynomial ergodicity and additional conditions on the batch size b, the lugsail batch means estimators are strongly consistent [26].

      Monte Carlo simulations are often terminated according to a fixed‐time regime. That is, before the start of the simulation, it is decided that some n Superscript asterisk steps of the process will be generated. The fixed‐time termination rule may be formally written as

      (6)upper T Subscript f Baseline left-parenthesis epsilon right-parenthesis equals inf left-brace right-brace colon greater-than-or-equal-to greater-than-or-equal-to n 0 colon less-than-or-equal-to less-than-or-equal-to plus plus times times epsilon of II left-parenthesis right-parenthesis less-than less-than nn asterisk n minus minus 1 epsilon

      The termination time is deterministically dependent on epsilon. Specifically, upper T Subscript f Baseline left-parenthesis epsilon right-parenthesis equals max left-brace right-brace comma n asterisk comma left ceiling right ceiling epsilon minus minus 1. Glynn and Whitt [29] show that upper T Subscript f Baseline left-parenthesis epsilon right-parenthesis right-arrow infinity as epsilon right-arrow 0. However, since the structure of the underlying distribution upper F and the quantity of interest theta Subscript h are unknown, there is often little intuition as to what n Superscript asterisk and epsilon should be for any given problem.

      5.1 IID Monte Carlo

      The absolute precision sequential stopping rule terminates simulation when the variability in the simulation is smaller than a prespecified tolerance, epsilon. Specifically, simulation is terminated at time upper T 1 where

upper T Subscript a Baseline left-parenthesis epsilon right-parenthesis equals inf left-brace right-brace colon greater-than-or-equal-to greater-than-or-equal-to n 0 colon less-than-or-equal-to less-than-or-equal-to plus plus plus Vn slash slash 1 p times times epsilon of II left-parenthesis right-parenthesis less-than less-than nn asterisk n minus minus 1 epsilon

      In situations where the components of theta Subscript h are in different units, stopping simulation when the variability in the estimator is small compared to the size of the estimate is natural. For a choice of norm double-vertical-bar dot double-vertical-bar Subscript a, a relative‐magnitude sequential stopping rule terminates simulation at

upper T Subscript m Baseline left-parenthesis epsilon right-parenthesis equals inf left-brace right-brace 


                  <div class= Скачать книгу