15 Hong, Y., Hsu, K., Moradkhani, H., & Sorooshian, S. (2006). Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resources Research, 42(8). https://doi.org/10.1029/2005wr004398
16 Hong, Y., Adler, R. F., Negri, A., & Huffman, G. J. (2007). Flood and landslide applications of near real‐time satellite rainfall products. Natural Hazards, 43(2), 285–294. https://doi.org/10.1007/s11069‐006‐9106‐x
17 Hong, Y., Tang, G., Ma, Y., Huang, Q., Han, Z., Zeng, Z., et al. (2018). Remote sensing precipitation: Sensors, retrievals, validations, and applications. In X. Li & H. Vereecken (Eds.), Observation and Measurement of Ecohydrological Processes (pp. 1–23). Berlin: Springer.
18 Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi‐global, multiyear, combined‐sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. https://doi.org/10.1175/jhm560.1
19 Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., et al. (2019). NASA Global Precipitation Measurement (GPM) Integrated Multi‐satellitE Retrievals for GPM (IMERG). [Algorithm theoretical basis document (ATBD)]. Greenbelt, MD: NASA/GSFC. https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1b.pdf
20 Jiang, L., & Bauer‐Gottwein, P. (2019). How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. Journal of Hydrology, 572, 486–500. https://doi.org/10.1016/j.jhydrol.2019.03.042
21 Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503. https://doi.org/Doi 10.1175/1525‐7541(2004)005<0487:Camtpg>2.0.Co;2
22 Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264–277.
23 Legates, D. R., & Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge‐corrected, global precipitation. International Journal of Climatology, 10(2), 111–127.
24 Ma, M., Liu, C., Zhao, G., Xie, H., Jia, P., Wang, D., et al. (2019). Flash flood risk analysis based on machine learning techniques in the Yunnan Province, China. Remote Sensing, 11(2), 170.
25 Ma, M., Wang, H., Jia, P., Tang, G., Wang, D., Ma, Z., & Yan, H. (2020). Application of the GPM‐IMERG products in flash flood warning: A case study in Yunnan, China. Remote Sensing, 12(12), 1954. https://doi.org/10.3390/rs12121954
26 Mega, T., Ushio, T., Kubota, T., Kachi, M., Aonashi, K., & Shige, S. (2014). Gauge adjusted global satellite mapping of precipitation (GSMaP_Gauge) (pp. 1–4). Presented at the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE.
27 Shen, Y., & Xiong, A. (2016). Validation and comparison of a new gauge‐based precipitation analysis over mainland China. International Journal of Climatology, 36(1), 252–265. https://doi.org/10.1002/joc.4341
28 Shen, Y., Zhao, P., Pan, Y., & Yu, J. (2014). A high spatiotemporal gauge‐satellite merged precipitation analysis over China. Journal of Geophysical Research: Atmospheres, 119(6), 3063–3075. https://doi.org/10.1002/2013JD020686
29 Stoffelen, A. (1998). Toward the true near‐surface wind speed: Error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans, 103(C4), 7755–7766. https://doi.org/10.1029/97jc03180
30 Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day‐1 IMERG and TMPA Version‐7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152–167. https://doi.org/10.1016/j.jhydrol.2015.12.008
31 Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., & Hong, Y. (2016). Statistical and hydrological comparisons between TRMM and GPM level‐3 products over a midlatitude basin: Is Day‐1 IMERG a good successor for TMPA 3B42V7? Journal of Hydrometeorology, 17(1), 121–137. https://doi.org/10.1175/jhm‐d‐15‐0059.1
32 Tang, G., Zeng, Z., Ma, M., Liu, R., Wen, Y., & Hong, Y. (2017). Can near‐real‐time satellite precipitation products capture rainstorms and guide flood warning for the 2016 summer in south China? IEEE Geoscience and Remote Sensing Letters, 14(8), 1208–1212. https://doi.org/10.1109/lgrs.2017.2702137
33 Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., & Hong, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697. https://doi.org/10.1016/j.rse.2020.111697
34 Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205–1218. https://doi.org/10.1175/BAMS‐84‐9‐1205
35 Vionnet, V., Fortin, V., Gaborit, E., Roy, G., Abrahamowicz, M., Gasset, N., & Pomeroy, J. W. (2019). High‐resolution hydrometeorological modelling of the June 2013 flood in southern Alberta, Canada. Hydrology and Earth System Sciences Discussions, 1–36. https://doi.org/10.5194/hess‐2019‐152
36 Wang, C., Tang, G., Han, Z., Guo, X., & Hong, Y. (2018). Global intercomparison and regional evaluation of GPM IMERG Version‐03, Version‐04 and its latest Version‐05 precipitation products: Similarity, difference and improvements. Journal of Hydrology, 564, 342–356. https://doi.org/10.1016/j.jhydrol.2018.06.064
37 Yang, D., Kane, D., Zhang, Z., Legates, D., & Goodison, B. (2005). Bias corrections of long‐term (1973‐2004) daily precipitation data over the northern regions. Geophysical Research Letters, 32(19). https://doi.org/10.1029/2005gl024057
38 Yong, B., Ren, L., Hong, Y., Gourley, J. J., Tian, Y., Huffman, G. J., et al. (2013). First evaluation of the climatological calibration algorithm in the real‐time TMPA precipitation estimates over two basins at high and low latitudes. Water Resources Research, 49(5), 2461–2472. https://doi.org/10.1002/wrcr.20246
39 Zeng, Z., Tang, G., Hong, Y., Zeng, C., & Yang, Y. (2017). Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sensing Letters, 8(6), 528–536. https://doi.org/10.1080/2150704x.2017.1297544
40 Zhang, Y., Hong, Y., Wang, X., Gourley, J. J., Xue, X., Saharia, M., et al. (2015). Hydrometeorological analysis and remote sensing of extremes: Was the July 2012 Beijing flood