Remote Sensing of Water-Related Hazards. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: География
Год издания: 0
isbn: 9781119159148
Скачать книгу
GPM Global Precipitation Measurement GSMaP Global Satellite Mapping of Precipitation GSMaP Gauge‐adjusted Global Satellite Mapping of Precipitation V6/V7 IMERG Integrated Multi‐satellitE Retrievals for Global Precipitation Measurement IMERG_cal IMERG calibrated precipitation IMERG_uncal IMERG uncalibrated precipitation IMERG‐E IMERG Early run IMERG‐F IMERG Final run KGE’ Kling‐Gupta efficiency ME Mean error MERRA2 The Modern‐Era Retrospective Analysis for Research and Applications, Version 2 MTC Multiplicative TC NE Northeastern region PCDR PERSIANN‐Climate Data Record PERSIANN Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks PERSIANN‐CCS PERSIANN‐ Cloud Classification System POD Probability of detection RMSE Root mean square error RTI Rain Trigger Index SM2RAIN SM2RAIN based on ESA Climate Change Initiative (CCI) SMI Soil Moisture Index T3B42 TRMM Multi‐satellite Precipitation Analysis (TMPA) 3B42 V7 TC Triple collocation TMI TRMM microwave imager TMPA TRMM multi‐satellite precipitation analysis TP Qinghai‐Tibet Plateau XJ Xinjiang Province

      We appreciate the extensive efforts by the developers of the ground, satellite, and reanalysis precipitation datasets to make their products available. The study is funded by the Global Water Futures program in Canada, the National Natural Science Foundation of China (grant 71461010701 and 41471430), and the National Key R&D Program of China (2018YFC1508105).

      1 Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D., & Stoffelen, A. (2015). Characterization of precipitation product errors across the United States using multiplicative triple collocation. Hydrology and Earth System Sciences, 19(8), 3489–3503. https://doi.org/10.5194/hess‐19‐3489‐2015

      2 Ashouri, H., Hsu, K.‐L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., et al. (2015). PERSIANN‐CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83. https://doi.org/10.1175/bams‐d‐13‐00068.1

      3 Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D., & Ye, H. (2018). On distinguishing snowfall from rainfall using near‐surface atmospheric information: Comparative analysis, uncertainties, and hydrologic importance. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3240

      4 Chen C.‐Y., Liou W.‐Z., & Hsu C.‐H. (2017). A Rainfall‐based Warning Model for Predicting Landslides Using QPESUMS Rainfall Data. Retrieved from https://ir.lib.nchu.edu.tw/handle/11455/97403

      5 Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Puca, S., Rinollo, A., et al. (2015). Integration of satellite soil moisture and rainfall observations over the Italian territory. Journal of Hydrometeorology, 16(3), 1341–1355. https://doi.org/10.1175/jhm‐d‐14‐0108.1

      6 Clark, R. A., Gourley, J. J., Flamig, Z. L., Hong, Y., & Clark, E. (2014). CONUS‐wide evaluation of National Weather Service flash flood guidance products. Weather and Forecasting, 29(2), 377–392.

      7 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828

      8 Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66

      9 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA‐2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli‐d‐16‐0758.1

      10 Gourley, J. J., Flamig, Z. L., Vergara, H., Kirstetter, P.‐E., Clark III, R. A., Argyle, E., et al. (2017). The FLASH Project: Improving the tools for flash flood monitoring and prediction across the United States. Bulletin of the American Meteorological Society, 98(2), 361–372.

      11 Guo, L., He, B., Ma, M., Chang, Q., Li, Q., Zhang, K., & Hong, Y. (2018). A comprehensive flash flood defense system in China: Overview, achievements, and outlook. Natural Hazards, 92(2), 727–740.

      12 Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91.

      13 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

      14 Hong, Y., Hsu, K. L., Sorooshian, S., & Gao, X. G. (2004). Precipitation estimation from remotely sensed imagery using an artificial