85 85. Ong KK, Loos RJF. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 2006; 95(8):904–8. doi:10.1080/08035250600719754
86 86. Barker DJP, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005; 353(17):1802–9. doi:10.1056/NEJMoa044160
87 87. Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker DJ, Eriksson JG. Body mass index during childhood and adult body composition in men and women aged 56–70 y. Am J Clin Nutr 2008; 87(6):1769–75. doi:10.1093/ajcn/87.6.1769
88 88. Bhargava SK, Sachdev HS, Fall CHD, et al. Relation of serial changes in childhood body‐mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350(9):865–75. doi:10.1056/NEJMoa035698
89 89. Yan J, Liu L, Zhu Y, Huang G, Wang PP. The association between breastfeeding and childhood obesity: a meta‐analysis. BMC Public Health 2014; 14:1267. doi:10.1186/1471‐2458‐14‐1267
90 90. Kramer MS, Moodie EEM, Dahhou M, Platt RW. Breastfeeding and infant size: evidence of reverse causality. Am J Epidemiol 2011; 173(9):978–83. doi:10.1093/aje/kwq495
91 91. Kramer MS, Matush L, Vanilovich I, et al. A randomized breast‐feeding promotion intervention did not reduce child obesity in Belarus. J Nutr 2009; 139(2):417S–21S. doi:10.3945/jn.108.097675
92 92. Martin RM, Kramer MS, Patel R, et al. Effects of promoting long‐term, exclusive breastfeeding on adolescent adiposity, blood pressure, and growth trajectories: a secondary analysis of a randomized clinical trial. JAMA Pediatr 2017; 171(7):e170698. doi:10.1001/jamapediatrics.2017.0698
93 93. Martin RM, Patel R, Kramer MS, et al. Effects of promoting longer‐term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: a cluster‐randomized, controlled trial. Circulation 2014; 129(3):321–9. doi:10.1161/CIRCULATIONAHA.113.005160
94 94. Gunderson EP, Rifas‐Shiman SL, Oken E, et al. Association of fewer hours of sleep at 6 months postpartum with substantial weight retention at 1 year postpartum. Am J Epidemiol 2008; 167(2):178–87. doi:10.1093/aje/kwm298
95 95. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta‐analysis of prospective studies. Sleep Med 2014; 15(12):1456–62. doi:10.1016/j.sleep.2014.07.018
96 96. Li L, Zhang S, Huang Y, Chen K. Sleep duration and obesity in children: a systematic review and meta‐analysis of prospective cohort studies. J Paediatr Child Health 2017; 53(4):378–85. doi:10.1111/jpc.13434
97 97. Miller MA, Kruisbrink M, Wallace J, Ji C, Cappuccio FP. Sleep duration and incidence of obesity in infants, children, and adolescents: a systematic review and meta‐analysis of prospective studies. Sleep 2018; 41(4):1–19. doi:10.1093/sleep/zsy018
98 98. Taveras EM, Rifas‐Shiman SL, Oken E, Gunderson EP, Gillman MW. Short sleep duration in infancy and risk of childhood overweight. Arch Pediatr Adolesc Med 2008; 162(4):305–11. doi:10.1001/archpedi.162.4.305
99 99. Cespedes EM, Hu FB, Redline S, et al. Chronic insufficient sleep and diet quality: contributors to childhood obesity. Obesity 2016; 24(1):184–90. doi:10.1002/oby.21196
100 100. Taveras EM, Gillman MW, Peña M‐M, Redline S, Rifas‐Shiman SL. Chronic sleep curtailment and adiposity. Pediatrics 2014; 133(6):1013–22. doi:10.1542/peds.2013‐3065
101 101. Ekstedt M, Darkeh MHSE, Xiu L, et al. Sleep differences in one‐year‐old children were related to obesity risks based on their parents’ weight according to baseline longitudinal study data. Acta Paediatr 2017; 106(2):304–11. doi:10.1111/apa.13657
102 102. Peña M‐M, Rifas‐Shiman SL, Gillman MW, Redline S, Taveras EM. Racial/ethnic and socio‐contextual correlates of chronic sleep curtailment in childhood. Sleep 2016; 39(9):1653–61. doi:10.5665/sleep.6086
103 103. Taylor BJ, Gray AR, Galland BC, et al. Targeting sleep, food, and activity in infants for obesity prevention: an RCT. Pediatrics 2017; 139(3):e20162037. doi:10.1542/peds.2016‐2037
104 104. Ash T, Taveras EM. Associations of short sleep duration with childhood obesity and weight gain: summary of a presentation to the National Academy of Science’s Roundtable on Obesity Solutions. Sleep Health 2017; 3(5):389–92. doi:10.1016/j.sleh.2017.07.008
105 105. Agaronov A, Ash T, Sepulveda M, Taveras EM, Davison KK. Inclusion of sleep promotion in family‐based interventions to prevent childhood obesity. Child Obes 2018; 14(8):485–500. doi:10.1089/chi.2017.0235
106 106. Fernandez‐Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019; 62(10):1789–801. doi:10.1007/s00125‐019‐4951‐9
107 107. Tobi EW, Goeman JJ, Monajemi R, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014; 5:5592. doi:10.1038/ncomms6592
108 108. Sharp GC, Salas LA, Monnereau C, et al. Maternal BMI at the start of pregnancy and offspring epigenome‐wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26(20):4067–85. doi:10.1093/hmg/ddx290
109 109. Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome‐wide methylation changes in children. JCI Insight 2018; 3(17):e122572. doi:10.1172/jci.insight.122572
110 110. Küpers LK, Xu X, Jankipersadsing SA, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015; 44(4):1224–37. doi:10.1093/ije/dyv048
111 111. Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert M‐F. Mediation by placental DNA methylation of the association of prenatal maternal smoking and birth weight. Am J Epidemiol 2019; 188(11):1878–86. doi:10.1093/aje/kwz184
112 112. Marco A, Kisliouk T, Tabachnik T, Meiri N, Weller A. Overweight and CpG methylation of the Pomc promoter in offspring of high‐fat‐diet‐fed dams are not “reprogrammed” by regular chow diet in rats. FASEB J 2014; 28(9):4148–57. doi:10.1096/fj.14‐255620
113 113. Steculorum SM, Bouret SG. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 2011; 152(11):4171–9. doi:10.1210/en.2011‐1279
114 114. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304(5667):108–10. doi:10.1126/science.1095004
115 115. Steculorum SM, Collden G, Coupe B, et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J Clin Invest 2015; 125(2):846–58. doi:10.1172/JCI73688
116 116. Vogt MC, Paeger L, Hess S, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high‐fat feeding. Cell 2014; 156(3):495–509. doi:10.1016/j.cell.2014.01.008
117 117. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341(6150):1241214. doi:10.1126/science.1241214
118 118. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122):1027–31. doi:10.1038/nature05414
119 119. Yuan C, Gaskins AJ, Blaine AI, et al. Association between cesarean birth and risk of obesity in offspring in childhood, adolescence, and early adulthood. JAMA Pediatr 2016; 170(11):e162385. doi:10.1001/jamapediatrics.2016.2385
120 120. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes 2014; 38(10):1290–8. doi:10.1038/ijo.2014.119
121 121. Block JP, Bailey LC, Gillman MW, et al. Early antibiotic exposure and weight outcomes in young children. Pediatrics 2018; 142(6):e20180290. doi:10.1542/peds.2018‐0290
122 122. Gillman MW, Ludwig DS. How early should obesity prevention start? N Engl J Med 2013; 369(23):2173–5.