Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет. Нейт Сильвер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Нейт Сильвер
Издательство:
Серия:
Жанр произведения: Публицистика: прочее
Год издания: 2012
isbn: 978-5-389-09938-8
Скачать книгу
Лоренц и суперкомпьютер Bluefire; если мы не можем улучшить их результаты, то все дорогостоящие вычислительные мощности просто не выполняют свою работу.

      У нас есть масса данных о том, какой была погода в прошлом, начиная еще со времен Второй мировой войны. Например, я могу зайти на сайт Wunderground.com и узнать, что в 13 января 1978 г. в 7 часов утра в Лэнсинге, штат Мичиган, – в день и час моего рождения – температура была равна –8 °С, шел небольшой снег и дул северо-восточный ветер{275}. Однако сравнительно немного людей занималось сбором данных о прогнозах погоды из прошлого. Ожидался ли в то утро в Лэнсинге снег? Это был один из тех немногих элементов информации, который можно было бы рассчитывать найти в интернете, но его там нет.

      В 2002 г. предприниматель по имени Эрик Флер, выпускник факультета вычислительной техники Университета штата Огайо, работавший на MCI, перевернул все с ног на голову. Он попросту стал собирать данные о прогнозах, выпущенных NWS, Weather Channel и AccuWeather, чтобы понять, какая модель прогноза более точна – правительственная или частная. Сначала он занялся этим исключительно для самообразования – он проводил своего рода широкомасштабный научный проект, – однако это увлечение довольно быстро превратилось в прибыльный бизнес с названием ForecastWatch.com, в рамках которого данные переупаковываются в модернизированные по заказам пользователей отчеты для клиентов, начиная от трейдеров на энергетическом рынке (для которых изменение температуры на долю градуса приравнивается к десяткам тысяч долларов) и заканчивая учеными.

      Флер обнаружил, что явного победителя выявить не удается. Его данные показывали, что AccuWeather чуть лучше других удаются прогнозы по осадкам, Weather Channel – прогнозы по температуре, а прогнозы правительства достаточно точны во всем остальном. То есть в целом все прогнозы были достаточно хороши.

      Но чем больше оказывался период прогнозирования, тем менее точными становились прогнозы (рис. 4.6). Допустим, прогнозы, создаваемые за восемь дней, достаточно хороши с точки зрения постоянства, однако не намного лучше климатологических.

      А если интервал прогнозирования составляет девять и более дней, все профессиональные прогнозы оказывались стабильно хуже климатологических данных.

      Лофт рассказывал мне, что в тех случаях, когда период прогнозирования даже немного превышает неделю, теория хаоса начинает брать верх над всем остальным, и динамическая память атмосферы полностью стирается. Хотя приведенная ниже аналогия вряд ли может считаться совершенно точной, она помогает нам подумать об атмосфере как о трассе для гонок NASCAR, в которой различные погодные системы представлены отдельными автомобилями. После первой пары десятков кругов по трассе и при условии знания стартового порядка машин мы можем сделать довольно неплохое предсказание порядка, в котором они будут проезжать мимо нас. Наши предсказания не будут идеальными: на них повлияют и неожиданные поломки, и пит-стопы, и заглохшие моторы, –


<p>275</p>

«History for Lansing, MI: Friday January 13, 1978», Wunderground.com. http://www.wunderground.com/history/airport/KLAN/1978/1/13/DailyHistory.html?req_city=Lansing&req_state=MI&req_statename=Michigan.