Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет. Нейт Сильвер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Нейт Сильвер
Издательство:
Серия:
Жанр произведения: Публицистика: прочее
Год издания: 2012
isbn: 978-5-389-09938-8
Скачать книгу
считать «лучшим»? Я бы сказал просто – лучшим является самый точный прогноз. Однако я знаю о нескольких конкурирующих между собой идеях в области прогнозирования погоды.

      В известном эссе 1993 г.{274}, написанном Алланом Мерфи (работавшим в то время метеорологом в Университете штата Орегон), утверждалось, что в сообществе прогнозистов погоды имеются целых три определения качества прогноза. Мерфи не утверждал, что то или иное определение лучше остальных; скорее, он пытался начать более открытое и честное их обсуждение. Версии этих определений могут применяться почти в любой области, где нужны прогнозы или предсказания.

      Первый (и, возможно, самый очевидный) способ оценки прогноза, писал Мерфи, связан с тем, что он сам называл «качеством», но, пожалуй, его лучше определить как правильность. Иными словами, оценивается ответ на вопрос, соответствовала ли реальная погода прогнозу?

      Второй способ обозначен словом «последовательность», но я считаю, что в данном случае чаще подходит слово честность. Даже если прогноз оказался достаточно точным, был ли это лучший прогноз, на который способен прогнозист в то время? Отражал ли он самые наилучшие из имевшихся суждений и модифицировали ли его каким-либо образом перед тем, как представить публике?

      И, наконец, Мерфи говорил об экономической ценности прогноза. Способствовал ли он принятию общественностью и политиками более правильных решений?

      Проведенное Мерфи различие между правильностью и честностью не сразу очевидно, однако крайне важно. Когда созданный мной прогноз оказывается неверным, я часто спрашиваю себя, был ли это лучший вариант прогноза, который я мог бы дать с учетом имевшихся у меня на тот момент данных. Иногда я считаю, что этак: мой мыслительный процесс оказался верным, я провел все необходимые исследования, выстроил хорошую модель и точно указал, какая доля неопределенности присутствует в прогнозе. В других же случаях я обнаруживал, что мне не нравится моя собственная работа. Иногда я слишком быстро отказывался от ключевых элементов исследования. Иногда я переоценивал степень предсказуемости проблемы. Иногда у меня возникали какие-то другие предубеждения или неверные стимулы.

      Я не хочу сказать, что вы должны ругать себя всякий раз, когда ваш прогноз оказывается неверным. Напротив, признаком того, что вы делаете хороший прогноз, является то, что вы полностью принимаете то, как развиваются события, понимая, что не все из них вы можете непосредственно контролировать. Однако у вас всегда есть возможность спросить себя о том, какие цели вы имели, принимая свое решение.

      В долгосрочной перспективе заявленные Мерфи цели правильности и честности должны сходиться друг с другом, когда у нас имеются правильные стимулы. Однако так бывает не всегда. Например, не исключено, что политических комментаторов из McLaughlin Group больше волновало желание казаться толковыми на экране телевизора, чем создание


<p>274</p>

Allan H. Murphy, «What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting», American Meteorological Society 8 (June 1993): pp. 281–293. http://www.swpc.noaa.gov/forecast_verification/Assets/Bibliography/i1520%E2%80%930434%E2%80%93008%E2%80%9302%E2%80%930281.pdf.