φ – Число Бога. Золотое сечение – формула мироздания. Марио Ливио. Читать онлайн. Newlib. NEWLIB.NET

Автор: Марио Ливио
Издательство:
Серия: Золотой фонд науки
Жанр произведения: Математика
Год издания: 2002
isbn: 978-5-17-094497-2
Скачать книгу
на 2, а это всегда дает четное число. Поскольку p2 равно четному числу, p2 тоже четное число. Однако если квадрат числа – четное число, значит, и само это число тоже четное (напомню, что квадрат – это число, умноженное само на себя, а при умножении нечетного числа на себя результат будет нечетным). Таким образом, мы доказали, что число p – четное. Вспомним, что это значит, что q должно быть нечетным: ведь у p и q нет общих делителей. Однако если p четное число, значит, его можно записать в виде p = 2r, ведь у четного числа должен быть делитель 2. А следовательно, вышеуказанное уравнение p2 = 2 q2 можно записать в виде (2r)2 (мы просто заменили p на 2r), то есть поскольку (2r)2= (2r) × (2r)] 4r2 = 2 q2. Теперь разделим обе части равенства на 2 и получим 2r2 = q2. Однако из этого следует – по тем же логическим выкладкам, которые мы только что применяли, – что q2 – четное число (поскольку равно дважды повторенному другому числу), а следовательно, и q – тоже четное число. Однако отметим, что выше мы доказали, что q должно быть нечетным! Итак, мы пришли к очевидному логическому противоречию – доказали, что число должно быть и четным, и нечетным одновременно. Этот факт показывает, что наше первоначальное предположение – что существуют два целых числа p и q, отношение которых равно √2 – ложно, что и требовалось доказать. Числа вроде √2 – это новый вид чисел, иррациональные числа.

      Похожим способом можно доказать, что квадратный корень любого натурального числа, не являющегося полным квадратом (вроде 9 или 16), – иррациональное число. Числа вроде √3 и √5 – иррациональные.

      Невозможно переоценить значимость открытия несоизмеримости и иррациональных чисел. До этого открытия математики предполагали, что если у вас есть любые два отрезка, один из которых длиннее другого, всегда можно найти какую-то меньшую единицу, чтобы измерить длины обоих отрезков и получить целое число этих единиц. Если, скажем, один отрезок длиной 21,37 дюймов, а второй – 11,475 дюймов, можно измерить оба в единицах в одну тысячную дюйма, и тогда в первом будет 21 370, а во втором – 11 475 таких единиц. Поэтому древние ученые были убеждены, что подобную общую единицу измерения можно найти всегда, надо только набраться терпения. Открытие несоизмеримости означает, что два отрезка прямой, находящиеся между собой в отношении золотого сечения (АС и СВ на рис. 2), диагональ и сторона квадрата или диагональ и сторона правильного пятиугольника не обладают такой общей единицей измерения, и найти ее невозможно. В 1988 году в журнале «Mathematics Magazine» был опубликован стишок Стивена Кашинга, отражающий нашу естественную реакцию на иррациональные числа:

      Пифагор

      С давних пор

      Дразнит нас скандальным

      Иррациональным.

      Нам станет легче осознать, какой огромный интеллектуальный скачок был проделан, чтобы открыть иррациональные числа, если мы поймем, каким судьбоносным открытием (или изобретением) для человечества стали даже дроби – рациональные числа вроде 1/2, 3/5 или 11/13. Живший в XIX веке математик Леопольд Кронекер (1823–1891) выразил