С точки зрения специалиста по информатике (или, как в случае с Розенблаттом, психолога), обработку информации нейронами можно смоделировать в компьютерной программе – перцептроне, – которая преобразует много численных входных сигналов в один выходной сигнал. Аналогия между нейроном и перцептроном показана на рис. 1. На рис. 1A мы видим нейрон с ветвистыми дендритами (волокнами, которые проводят входящие импульсы в клетку), телом клетки и аксоном (или выводным каналом). На рис. 1B изображен простой перцептрон. Как и нейрон, перцептрон суммирует все входящие сигналы. Если итоговая сумма равняется порогу перцептрона или превышает его, перцептрон выдает значение 1 (“передает сигнал”); в противном случае он выдает значение 0 (“не передает сигнал”). Чтобы смоделировать различную силу связей нейрона, Розенблатт предложил присваивать каждому входному сигналу перцептрона численный вес и умножать входной сигнал на его вес, прежде чем прибавлять к сумме. Порог перцептрона – это число, определяемое программистом (или, как мы увидим, узнаваемое самим перцептроном).
Рис. 1. A: нейрон в мозге; В: простой перцептон
Иными словами, перцептрон – это простая программа, которая принимает решение “да или нет” (1 или 0) в зависимости от того, достигает ли сумма взвешенных входных сигналов порогового значения. Вероятно, вы тоже время от времени принимаете такие решения в жизни. Например, вы узнаете мнение нескольких друзей о конкретном фильме, но вкусам одних друзей доверяете больше, чем вкусам других. Если сумма “дружеских восторгов” – при большем весе мнений тех друзей, которым вы доверяете больше, – достаточно высока (то есть превышает некоторый неосознанный порог), вы решаете посмотреть фильм. Именно так перцептрон выбирал бы фильмы к просмотру, если бы у него были друзья.
Вдохновленный сетями нейронов в мозге, Розенблатт предположил, что сети перцептронов могут выполнять визуальные задачи, например справляться с распознаванием объектов и лиц. Чтобы понять, как это может работать, давайте изучим, как с помощью перцептрона решить конкретную визуальную задачу: распознать рукописные цифры вроде тех, что показаны на рис. 2.
Давайте сделаем перцептрон детектором восьмерок – в таком случае он будет выдавать единицу, если входным сигналом