Концепция обучения с учителем – ключевой элемент современного ИИ, поэтому ее стоит разобрать подробнее. Как правило, обучение с учителем требует большого набора положительных (скажем, коллекции восьмерок, написанных разными людьми) и отрицательных (скажем, коллекции других рукописных цифр, среди которых нет восьмерок) примеров. Каждый пример размечается человеком, который присваивает ему определенную категорию (метку) – здесь это “восьмерка” и “не восьмерка”. Метка применяется в качестве контрольного сигнала. Некоторые положительные и отрицательные примеры используются для тренировки системы и формируют тренировочное множество. Оставшиеся примеры – тестовое множество – используются для оценки работы системы после обучения, чтобы понять, насколько хорошо она научилась правильно отвечать на запросы в целом, а не только на обучающие примеры.
Вероятно, самым важным в информатике стоит признать понятие “алгоритм”. Оно обозначает “рецепт” со списком шагов, которые компьютер может предпринять для решения конкретной задачи. Главным вкладом Фрэнка Розенблатта в ИИ стало создание особого алгоритма, названного алгоритмом обучения перцептрона. С помощью этого алгоритма перцептрон можно научить на примерах определять веса и пороговое значение для получения верных ответов. Вот как он работает: сначала весам и порогу присваиваются случайные значения в диапазоне от –1 до 1. В нашем примере первому входному сигналу может быть присвоен вес 0,2, второму – вес –0,6 и так далее. Пороговым значением может стать 0,7. С генерацией начальных значений без труда справится компьютерная программа, называемая генератором случайных чисел.
Теперь мы можем приступать к процессу обучения. Перцептрон получает первый обучающий пример, не видя метку с верной категорией. Перцептрон умножает каждый входной сигнал на его вес, суммирует результаты, сравнивает сумму с пороговым значением и выдает либо 1, либо 0. Здесь выходной сигнал 1 означает, что перцептрон распознал восьмерку, а выходной сигнал 0 – что он распознал