1 (a) für ein ideales Gas,
2 (b) für ein Van-der-Waals-Gas mit a = 0 und b = 5,11 × 10–2 dm3 mol–1,
3 (c) für ein Van-der-Waals-Gas mit a = 4,2 dm6 atm mol–2 und b = 0. Die ausgewählten Koeffizienten beschreiben stark nichtideales Verhalten; dies ist hinsichtlich praktischer Messwerte zwar übertrieben, aber die Effekte sind dafür deutlich sichtbar. Gegeben sind VA = 1,0 dm3, VE = 2,0 dm3, n = 1,0 mol und T = 298 K.
S2.1.8 Eine Probe von 1,0 mol CaCO3 (s) wurde auf 800 °C erhitzt, wo sie sich in CaO und CO2 zersetzte. Der Heizvorgang fand in einem Behälter statt, der auf einer Seite durch einen Kolben begrenzt wurde; dieser lag zu Beginn des Heizens auf dem Feststoff auf. Berechnen Sie die Arbeit, die bei einem Druck von 1,0 atm bei vollständiger Zersetzung verrichtet wurde. Wie groß wäre die Arbeit in einem zur Atmosphäre hin offenen Behälter?
S2.1.9 Berechnen Sie die Arbeit, die bei einer isothermen reversiblen Expansion eines Gases verrichtetwird, welches die ersten drei Terme der Virialgleichung, Gl. (1.25b), erfüllt:
1 (a) für 1,0 mol Ar bei 273 K (Daten für Argon finden Sie in Tab. 1.4 in Abschn. 1.3) und
2 (b) für die gleiche Menge eines idealen Gases. Das Volumen soll sich jeweils von 500 auf 1000 cm3 erhöhen.
S2.1.10 Schreiben Sie die Arbeit bei isothermer, reversibler Expansion eines Van-der-Waals-Gases als Funktion von reduzierten Variablen auf (siehe Abschn. 1.3). Geben Sie eine Definition für eine reduzierte Arbeit an, sodass derAusdruck unabhängig von der Art des Gases ist. Berechnen Sie die isotherme reversible Volumenarbeit entlang der kritischen Isotherme von Vkrit nach xVkrit.
Abschnitt 2.2 – Die Enthalpie
Diskussionsfragen
D2.2.1 Erklären Sie den Unterschied zwischen der Änderung der Enthalpie und der Änderung der Inneren Energie bei einer chemischen Reaktion oder einem physikalischen Prozess.
D2.2.2 Erklären Sie, warum für eine Substanz die Wärmekapazität bei konstantem Druck normalerweise größer ist als ihre Wärmekapazität bei konstantem Volumen.
Leichte Aufgaben
L2.2.1a Wenn einer Probe von 3,0 mol Ar (g) eine Wärmemenge von 229 J bei konstantem Druck zugeführt wird, steigt die Temperatur des Gases um 2,55 K. Berechnen Sie die molaren Wärmekapazitäten des Gases bei konstantem Druck und bei konstantem Volumen.
L2.2.1b Wenn einer Probe von 1,9 mol eines molekularen Gases eine Wärmemenge von 178 J bei konstantem Druck zugeführt wird, steigt die Temperatur des Gases um 1,78 K. Berechnen Sie die molaren Wärmekapazitäten des Gases bei konstantem Druck und bei konstantem Volumen.
L2.2.2a Berechnen Sie ΔHm – ΔUm für die Reaktion N2 (g) + 3H2 (g) → 2 NH3 (g) bei 298 K.
L2.2.2b Berechnen Sie ΔHm – ΔUm für die Reaktion C6H12O6 (s) + 6 O2 → 6 CO2 (g) + 6 H2O (l) bei 298 K.
L2.2.3a Für die Temperaturabhängigkeit von Cp eines idealen Gases wurde folgender empirischer Ausdruck gefunden: Cp/(J K–1) = 20,17 + 0,3665(T/K). Wie groß sind q, w, ΔU und ΔH beim Erhitzen von 1,00 mol des Gases von 25 °C auf 100 °C bei (i) konstantem Druck, (ii) konstantem Volumen?
L2.2.3b Für die Temperaturabhängigkeit von Cp eines idealen Gases wurde folgender empirischer Ausdruck gefunden: Cp/(J K–1) = 20,17 + 0,4001(T/K). Wie groß sind q, w, ΔU und ΔH beim Erhitzen von 1,00 mol des Gases von 25 °C auf 100 °C bei (i) konstantem Druck, (ii) konstantem Volumen?
L2.2.4a Beim Erhitzen von 3,0 mol O2 steige seine Temperatur von 260 K auf 285 K; der Druck sei konstant 3,25 atm. Berechnen Sie q, ΔH und ΔU bei gegebener Wärmekapazität von O2 bei konstantem Druck (Cp,m = 29,4 J K–1 mol–1).
L2.2.4b Beim Erhitzen von 2,0 mol CO2 steige seine Temperatur von 250 K auf 277 K; der Druck sei konstant 1,25 atm. Berechnen Sie q, ΔH und ΔU bei gegebener Wärmekapazität von CO2 bei konstantem Druck (Cp,m = 37,11 J K–1 mol–1).
Schwerere Aufgaben
S2.2.1 Die molare Verdampfungsenthalpie von Benzol am Siedepunkt (353,25 K) beträgt 30,8 kJ mol–1. Wie lange wäre die Heizzeit mit einer Widerstandsheizung, die mit einer Spannung von 12V und einer Stromstärke von 0,50A arbeitet, um 10 g Substanz bei einem Druck von 1,0 atm zu verdampfen?
S2.2.2 Die Wärmekapazität der Luft ist viel kleiner als die Wärmekapazität von flüssigem Wasser; eine relativ geringe Menge Energie in Form von Wärme reicht daher aus, um die Temperatur von Luft merklich zu erhöhen. Dies ist einer der Gründe dafür, weshalb in Wüstenregionen, an denen tagsüber brütende Hitze herrscht, die Nächte bitterkalt sind. Die molare Wärmekapazität von Luft bei 298 K und 1,00 atm ist ungefähr 21 J K–1 mol–1. Schätzen Sie ab, wieviel Energie nötig ist, um die Lufttemperatur in einem Raum mit den Abmessungen 5,5 m × 6,5 m × 3.0 m um 10 °C zu erhöhen. Wie lange würde es dauern (wenn wir etwaige Wärmeverluste vernachlässigen), bis ein Heizlüfter, der mit einer Leistung von 1,5 kW arbeitet, diese Temperaturerhöhung bewirkt hat (1 W = 1 J s–1)?
S2.2.3 Die folgenden Daten zeigen, wie die molare Wärmekapazität bei konstantem Druck unter Standardbedingungen,
T/K | 300 | 500 | 700 | 900 |
|
39,909 | 46,490 | 50,829 | 53,407 |
T/K | 1100 | 1300 | 1500 | |
|
54,993 | 56,033 | 56,759 |
Um welchen Betrag nimmt die molare Standardenthalpie von SO2 (g) zu, wenn die Temperatur von 298,15 K auf 1500 K erhöht wird? Hinweis: Passen Sie die gegebenen Daten einem Ausdruck mit der Form