Data Science in Theory and Practice. Maria Cristina Mariani. Читать онлайн. Newlib. NEWLIB.NET

Автор: Maria Cristina Mariani
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119674733
Скачать книгу
above and alpha 0 as the sum of all parameters, we can calculate the moments of the distribution. The first moment vector has coordinates:

upper E left-bracket upper X Subscript i Baseline right-bracket equals StartFraction alpha Subscript i Baseline Over alpha 0 EndFraction period

      The covariance matrix has elements:

Var left-parenthesis upper X Subscript i Baseline right-parenthesis equals StartFraction alpha Subscript i Baseline left-parenthesis alpha 0 minus alpha Subscript i Baseline right-parenthesis Over alpha 0 squared left-parenthesis alpha 0 plus 1 right-parenthesis EndFraction comma

      and when i not-equals j

Cov left-parenthesis upper X Subscript i Baseline comma upper X Subscript j Baseline right-parenthesis equals StartFraction minus alpha Subscript i Baseline alpha Subscript j Baseline Over alpha 0 squared left-parenthesis alpha 0 plus 1 right-parenthesis EndFraction period

      The covariance matrix is singular (its determinant is zero).

      Finally, the univariate marginal distributions are all beta with parameters upper X Subscript i Baseline tilde Beta left-parenthesis alpha Subscript i Baseline comma alpha 0 minus alpha Subscript i Baseline right-parenthesis. All these are in the reference (see Balakrishnan and Nevzorov 2004).

      Please refer to Lin (2016) for the proof of the properties of the Dirichlet distribution.

      2.3.2 Multinomial Distribution

      Definition 2.24 (Binomial distribution) A random variable upper X is said to have a binomial distribution with parameters n and p if it has a pmf shown below

upper P left-parenthesis x semicolon p comma n right-parenthesis equals StartBinomialOrMatrix n Choose k EndBinomialOrMatrix left-parenthesis p right-parenthesis Superscript x Baseline left-parenthesis 1 minus p right-parenthesis Superscript left-parenthesis n minus x right-parenthesis Baseline for x equals 0 comma 1 comma ellipsis comma n comma

      where p is the probability of success on an individual trial and n is number of trials in the binomial experiment.

      The multinomial distribution is a generalization of the binomial distribution. Specifically, assume that n independent distributions may result in one of the k outcomes generically labeled upper S equals StartSet 1 comma 2 comma ellipsis comma k EndSet, each with corresponding probabilities left-parenthesis p 1 comma ellipsis comma p Subscript k Baseline right-parenthesis. Now define a vector bold upper X equals left-parenthesis upper X 1 comma ellipsis comma upper X Subscript k Baseline right-parenthesis, where each of the upper X Subscript i counts the number of outcomes i in the resulting sample of size n. The joint distribution of the vector bold upper X is

f left-parenthesis x 1 comma ellipsis comma x Subscript k Baseline right-parenthesis equals StartFraction n factorial Over x 1 factorial ellipsis x Subscript k Baseline factorial EndFraction p 1 Superscript x 1 Baseline ellipsis p Subscript k Superscript x Super Subscript k Superscript Baseline bold 1 Subscript left-brace bold x bold 1 bold plus bold midline-horizontal-ellipsis bold plus bold x Sub Subscript bold k Subscript bold equals bold n right-brace Baseline period

      In the same way as the binomial probabilities appear as coefficients in the binomial expansion of left-parenthesis p plus left-parenthesis 1 minus p right-parenthesis right-parenthesis Superscript n, the multinomial probabilities are the coefficients in the multinomial expansion left-parenthesis p 1 plus midline-horizontal-ellipsis plus p Subscript k Baseline right-parenthesis Superscript n, so they sum to 1. This expansion in fact gives the name of the distribution.

      If we label the outcome i as a success and everything else a failure, then upper X Subscript i simply counts successes in n independent trials and thus upper X Subscript i Baseline tilde Binom left-parenthesis n comma p Subscript i Baseline right-parenthesis. Thus, the first moment of the random vector and the diagonal elements in the covariance matrix are easy to calculate as n p Subscript i and n p Subscript i Baseline left-parenthesis 1 minus p Subscript i Baseline right-parenthesis, respectively. The off‐diagonal elements (covariances) are not that complicated to calculate either. However, for multinomial random vectors, the first two moments are difficult to compute. The one‐dimensional marginal distributions are binomial; however, the joint distribution of left-parenthesis upper X 1 comma ellipsis comma upper X Subscript r Baseline right-parenthesis, the first r components, is not multinomial. Instead, suppose we group the first r categories into 1 and we let upper Y equals upper X 1 plus midline-horizontal-ellipsis plus upper X Subscript r. Because the categories are linked, that is, upper X 1 plus midline-horizontal-ellipsis plus upper X Subscript k Baseline equals n, we also have that upper Y equals n minus upper X Subscript r plus 1 Baseline minus midline-horizontal-ellipsis minus upper X Subscript k. We can easily verify that the vector left-parenthesis upper Y comma upper X Subscript 


                  <div class= Скачать книгу