37 37. Handschin, C. and B.M. Spiegelman, The role of exercise and PGC1α in inflammation and chronic disease. Nature, 2008. 454(7203): p. 463–469.
38 38. Bishop, D.J., et al., High‐intensity exercise and mitochondrial biogenesis: current controversies and future research directions. Physiology, 2019. 34(1): p. 56–70.
39 39. Hood, D.A., et al., Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochemical Journal, 2016. 473(15): p. 2295–2314.
40 40. Sandri, M., et al., PGC‐1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy‐specific gene transcription. Proceedings of the National Academy of Sciences, 2006. 103(44): p. 16260–16265.
41 41. Eisele, P.S., et al., The peroxisome proliferator‐activated receptor γ coactivator 1α/β (PGC‐1) coactivators repress the transcriptional activity of NF‐κB in skeletal muscle cells. Journal of Biological Chemistry, 2013. 288(4): p. 2246–2260.
42 42. Garcia, S., et al., Overexpression of PGC‐1α in aging muscle enhances a subset of young‐like molecular patterns. Aging Cell, 2018. 17(2): p. e12707.
43 43. Redza‐Dutordoir, M. and D.A. Averill‐Bates, Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research, 2016. 1863(12): p. 2977–2992.
44 44. Golden, T.R., D.A. Hinerfeld, and S. Melov, Oxidative stress and aging: beyond correlation. Aging Cell, 2002. 1(2): p. 117–123.
45 45. Schlame, M., L. Horvath, and L. Vigh, Relationship between lipid saturation and lipid‐protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species. Biochemical Journal, 1990. 265(1): p. 79–85.
46 46. Semba, R.D., et al., Tetra‐linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Medical Hypotheses, 2019. 127: p. 142–149.
47 47. Gonzalez‐Freire, M., et al., Targeted metabolomics shows low plasma lysophosphatidylcholine 18: 2 predicts greater decline of gait speed in older adults: the Baltimore longitudinal study of aging. The Journals of Gerontology: Series A, 2019. 74(1): p. 62–67.
48 48. Paradies, G., et al., Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta (BBA)‐Bioenergetics, 2014. 1837(4): p. 408–417.
49 49. Frohman, M.A., Role of mitochondrial lipids in guiding fission and fusion. Journal of Molecular Medicine, 2015. 93(3): p. 263–269.
50 50. Moaddel, R., et al., Plasma biomarkers of poor muscle quality in older men and women from the Baltimore Longitudinal Study of Aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2016. 71(10): p. 1266–1272.
51 51. Kitajima, Y., et al., Supplementation with branched‐chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. Journal of Gastroenterology, 2018. 53(3): p. 427–437.
52 52. Beasley, J.M., J.M. Shikany, and C.A. Thomson, The role of dietary protein intake in the prevention of sarcopenia of aging. Nutrition in Clinical Practice, 2013. 28(6): p. 684–690.
53 53. Jackman, S.R., et al., Branched‐chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Frontiers in Physiology, 2017. 8: p. 390.
54 54. Brosnan, J.T. and M.E. Brosnan, Branched‐chain amino acids: enzyme and substrate regulation. The Journal of Nutrition, 2006. 136(1): p. 207S–211S.
55 55. Stewart, J.B. and P.F. Chinnery, The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics, 2015. 16(9): p. 530–542.
56 56. Itsara, L.S., et al., Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genetics, 2014. 10(2): e1003974. doi:10.1371/journal.pgen.1003974. eCollection 2014 Feb.
57 57. Smigrodzki, R.M. and S.M. Khan, Mitochondrial microheteroplasmy and a theory of aging and age‐related disease. Rejuvenation Research, 2005. 8(3): p. 172–198.
58 58. Linnane, A., et al., Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. The Lancet, 1989. 333(8639): p. 642–645.
59 59. Khrapko, K. and J. Vijg, Mitochondrial DNA mutations and aging: devils in the details? Trends in Genetics, 2009. 25(2): p. 91–98.
60 60. Trifunovic, A., et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 2004. 429(6990): p. 417–423.
61 61. Milholland, B., Y. Suh, and J. Vijg, Mutation and catastrophe in the aging genome. Experimental Gerontology, 2017. 94: p. 34–40.
62 62. Zhang, L. and J. Vijg, Somatic mutagenesis in mammals and its implications for human disease and aging. Annual Review of Genetics, 2018. 52: p. 397–419.
63 63. Fakouri, N.B., et al., Toward understanding genomic instability, mitochondrial dysfunction and aging. The FEBS Journal, 2019. 286(6): p. 1058–1073.
64 64. Niemann, B., et al., Age and obesity‐associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Experimental Gerontology, 2013. 48(1): p. 55–63.
65 65. Roldan, M., et al., Aerobic and resistance exercise training reverses age‐dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiological Reports, 2019. 7(12): e14139. doi:10.14814/phy2.14139.
66 66. Iqbal, S., et al., Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle & Nerve, 2013. 48(6): p. 963–970.
67 67. Fernando, R., et al., Impaired proteostasis during skeletal muscle aging. Free Radical Biology and Medicine, 2019. 132: p. 58–66.
68 68. Chen, H., et al., Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell, 2010. 141(2): p. 280–289.
69 69. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016. 12(1): p. 1–222.
70 70. Sebastián, D., M. Palacín, and A. Zorzano, Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends in Molecular Medicine, 2017. 23(3): p. 201–215.
71 71. Romanello, V., et al., Inhibition of the fission machinery mitigates OPA1 impairment in adult skeletal muscles. Cell, 2019. 8(6): p. 597.
72 72. Crane, J.D., et al., The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2010. 65(2): p. 119–128.
73 73. Sebastián, D., et al., Mfn2 deficiency links age‐related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. The EMBO Journal, 2016. 35(15): p. 1677–1693.
74 74. Marzetti, E., et al., Association between myocyte quality control signaling and sarcopenia in old hip‐fractured patients: results from the Sarcopenia in HIp FracTure (SHIFT) exploratory study. Experimental Gerontology, 2016. 80: p. 1–5.
75 75. Ferrucci, L. and E. Fabbri, Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews Cardiology, 2018. 15(9): p. 505–522.
76 76. Nakahira, K., et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology, 2011. 12(3): p. 222.
77 77. West, A.P., et al., Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015. 520(7548): p. 553–557.
78 78.