Социальный метаболизм. Полилогический матричный анализ «обменных процессов» и стоимости. Александр Харчевников. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Харчевников
Издательство: Издательские решения
Серия:
Жанр произведения: Философия
Год издания: 0
isbn: 9785005369659
Скачать книгу
из уравнений (4) – (40) систему линейных уравнений, порядковые номера которых отмечены звёздочкой – (…) *. Общее число этих уравнений равно 27 (верхний индекс рядом со звёздочкой есть порядковый номер этого линейного уравнения в линейной системе уравнений данной задачи):

      f11 = x111 + x112 + x113 = 6000, (4) *1

      f21 = x211 + x212 + x213 = 0, (5) *2

      f31 = x311 + x312 + x313 = 0, (6) *3

      f12 = x121 + x122 + x123 = 9000, (7) *4

      f22 = x221 + x222 + x223 = 0, (8) *5

      f32 = x321 + x322 + x323 = 0, (9) *6

      f13 = x131 + x132 + x133 = 12000, (10) *7

      f23 = x231 + x232 + x233 = 0, (11) *8

      f33 = x331 + x332 + x333 = 0, (12) *9

      3× (x111 + x211 + x311) = 2× (x121 + x221 + x321), (16) *10

      2 × (x111 + x211 + x311) = 4 × (x131 + x231 + x331), (17) *11

      4 × (x121 + x221 + x321) = 3 × (x131 + x231 + x331), (18) *12

      3 × (x112 + x212 + x312) = 2 × (x122 + x222 + x322), (21) *13

      2 × (x112 + x212 + x312) = 4 × (x132 + x232 + x332), (22) *14

      4 × (x122 + x222 + x322) = 3 × (x132 + x232 + x332), (23) *15

      3 × (x113 + x213 + x313) = 2 × (x123 + x223 + x323), (26) *16

      2 × (x113 + x213 + x313) = 4 × (x133 + x233 + x333), (27) *17

      4 × (x123 + x223 + x323) = 3 × (x133 + x233 + x333), (28) *18

      (x111 + x211 + x311) = (x112 + x212 + x312), (32) *19

      (x111 + x211 + x311) = (x113 + x213 + x313), (33) *20

      (x112 + x212 + x312) = (x113 + x213 + x313), (34) *21

      (x121 + x221 + x321) = (x122 + x222 + x322), (35) *22

      (x121 + x221 + x321) = (x123 + x223 + x323), (36) *23

      (x122 + x222 + x322) = (x123 + x223 + x323), (37) *24

      (x131 + x231 + x331) = (x132 + x232 + x332), (38) *25

      (x131 + x231 + x331) = (x133 + x233 + x333), (39) *26

      (x132 + x232 + x332) = (x133 + x233 + x333). (40) *27

      Аналитическое решение этой линейной системы уравнений позволяет получить следующие значения неизвестных переменных xijk:

      x111 = 2000, x112 = 2000, x113 = 2000,

      x211 = 0, x212 = 0, x213 = 0, x311 = 0, x312 = 0, x313 = 0;

      x221 = 3000, x222 = 3000, x223 = 3000,

      x121 = 0, x122 = 0, x123 = 0, x321 = 0, x322 = 0, x323 = 0;

      x331 = 4000, x332