Социальный метаболизм. Полилогический матричный анализ «обменных процессов» и стоимости. Александр Харчевников. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Харчевников
Издательство: Издательские решения
Серия:
Жанр произведения: Философия
Год издания: 0
isbn: 9785005369659
Скачать книгу
в разделе «2. Общее отношение производства к распределению, обмену, потреблению» [19]. Эти шаги был подробно рассмотрены выше. В то же время с переходом к матрице рисунка 8 возникает некий казус с индексацией, в частности, с двойной индексацией анализируемых объёмов продуктов как элементов ячеек матрицы, которые по горизонтали (строка) связаны с координатой агента-производителя, а по вертикали (столбец) привязаны к координате агента-потребителя. Однако, так как каждый агент одновременно выступает в роли агента-производителя и агента-потребителя, то им присущ один и тот же индекс i, что вынуждает всё время оговаривать в какой роли выступает в данном моменте агент действительной жизни общества и вызывает затруднения в понимании изложенного, если такой оговорки нет. Общепринято, что первый индекс указывает всегда указывает строку, а второй индекс указывает на столбец данной матрицы. Иначе говоря, пара индексов ячеек с элементами матрицы, обозначающими количество продуктов, оказались обозначенными не только одинаковыми буквами «i», но при этом оказалась «утерянной» индексация вида продукта «j» (j = 1, 2, …, q).

      Для устранения этого казуса сохраним за первым индексом «i» первоначальное обозначение агента-производителя (строка), введя вместо обозначения второго индекса через «i» (столбец агента-потребителя) новое обозначение через «k». При этом сохраним индекс «j» для обозначения вида продукта. Тогда количество продукта в каждой ячейке матрицы, выделенной на рисунке 8 серым тонированием, будет иметь двойное индексирование с парой индексов «i» и «k», а сам элемент с количеством продукта в штуках будет обозначаться как – pik (= 1, 2, …, m; k = 1, 2, …, n). В данном примере максимальные значения индексов «i», «k» и «j» равны, соответственно, m = 3, n = 3 и q = 3.

      С учётом сделанных изменений, оставляя решение вопроса о «потери» индекса «j» для последующего анализа, матричная таблица рисунка 8 примет вид, представленный на рисунке 9.

      Рис. 9. Новый вариант балансовой матрицы «производство-потребление», описывающей равновесное состояние общества (при условии равенства структур производства и потребления по каждому агенту и равенства между собой самого воспроизводственного потребления этих агентов)

      Рассмотрим собственно саму балансовую матрицу равновесного состояния (см. рис. 10), которая в таблице рисунка 9 выделена серым тонированием, вписав в неё дополнительно по каждому элементу условное обозначение количества продукта, обозначаемое двойной индексацией, – pik.

      Рис. 10. Балансовая матрица «производство – потребление» в условиях равновесного состояния «условного общества»

      На рисунке 10 двухсторонними фигурными стрелками соединены те элементы (ячейки) балансовой матрицы, агенты которых, как агенты-производители, вовлечены в «обмен», на что указывает «зеркальное» отображение индексов этих