Очевидно, что по известным вероятностным характеристикам (Δx, δx, xизм) находятся вероятностные характеристики (α, β, γ) и наоборот. При этом рассматривается вектор (α,γ) зависимых случайных процессов, в частности стационарных, а α и β – независимые случайные процессы (величины).
В процессе выполнения поставленной цели относительно фактических и измеренных значений возможны следующие события.
1. Фактическое значение α параметра находится в области допустимых значений, т. е. на одном из трех отрезков, принадлежащих промежутку [xн, хв] (рис. 1.35). Тогда имеем событие Аα
2. Фактическое значение α находится вне области допустимых состояний, превышая хв (рис. 1.36). В итоге имеем Вα
3. Фактическое значение α находится вне области допустимых состояний, не достигая хн (рис. 1.37). В итоге имеем Cα
Рис. 1.35
Рис. 1.36
4. Измеренное значение γ индикатора х состояния динамической находится в области допустимых состояний объекта (рис. 1.38). В этом случае имеем событие Aγ
Рис. 1.37
Рис. 1.38
5. Измеренное значение γ индикатора х состояния динамической системы находится вне области допустимых значений, превышая
6. Измеренное значение γ индикатора х находится вне области допустимых значений, не достигая
Рис. 1.39
Рис. 1.40
В процессе контроля индикатора х, изменяющегося во времени на всей числовой оси, возможны следующие гипотезы.
Гипотеза Аα. Ограничиваемый индикатор х, его фактическое значение хф, находится в области допустимых значений, т. е. имеет место событие Аα.
Гипотеза Вα. Фактическое значение индикатора динамической системы xф находится вне области допустимых состояний Bα. С помощью средств контроля или оценки имеем Аγ, Вγ или Сγ.
Гипотеза Сα. Фактическое значение индикатора динамической системы xф находится вне области допустимых состояний Сα. С помощью средств