Wind Energy Handbook. Michael Barton Graham. Читать онлайн. Newlib. NEWLIB.NET

Автор: Michael Barton Graham
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119451167
Скачать книгу
the height of the boundary between the new and old boundary layers increases from zero at the transition point until the new boundary layer is fully established. The calculation of wind shear in the transition zone is covered by, for example, Cook (1985).

      (2.12)ModifyingAbove upper U With bar left-parenthesis h right-parenthesis equals StartFraction u Superscript asterisk Baseline Over kappa EndFraction left-parenthesis ln left-parenthesis StartFraction u Superscript asterisk Baseline Over italic f z 0 EndFraction right-parenthesis minus ln 6 plus 5.75 right-parenthesis

      This is similar to the so‐called ‘geostrophic wind speed’, G, which is the notional wind speed driving the boundary layer as calculated from the pressure field. The geostrophic wind speed is given by

      (2.13)upper G equals StartFraction u Superscript asterisk Baseline Over kappa EndFraction StartRoot left-bracket ln left-parenthesis StartFraction u Superscript asterisk Baseline Over italic f z 0 EndFraction right-parenthesis minus upper A right-bracket squared plus upper B squared EndRoot

      where, for neutral conditions, A = ln 6 and B = 4.5. This relationship is often referred to as the geostrophic drag law.

      The effect of surface roughness is not only to cause the wind speed to decrease closer to the ground. There is also a change in direction between the ‘free’ pressure‐driven geostrophic wind and the wind close to the ground. Although the geostrophic wind is driven by the pressure gradients in the atmosphere, Coriolis forces act to force the wind to flow at right angles to the pressure gradient, causing a characteristic circulating pattern. Thus in the northern hemisphere, wind flowing from high pressure in the south to low pressure in the north will be forced eastwards by Coriolis effects, in effect to conserve angular momentum on the rotating earth. The result is that the wind circulates anti‐clockwise around low‐pressure areas and clockwise around high‐pressure areas, or the other way round in the southern hemisphere. Close to the ground, these flow directions are modified due to the effect of surface friction. The total direction change, α, from the geostrophic to the surface wind is given by

      (2.14)sine alpha equals StartFraction negative upper B Over StartRoot left-bracket ln left-parenthesis StartFraction u Superscript asterisk Baseline Over italic f z 0 EndFraction right-parenthesis right-bracket squared plus upper B squared EndRoot EndFraction

      2.6.3 Turbulence intensity

      The turbulence intensity in the neutral atmosphere clearly depends on the surface roughness. For the longitudinal component, the standard deviation σu is approximately constant with height, so the turbulence intensity decreases with height. More precisely, the relationship σu ≈ 2.5u* may be used to calculate the standard deviation, with the friction velocity u* calculated as in the previous section. More recent work (ESDU 1985) suggests a variation given by

      (2.15)sigma Subscript u Baseline equals StartFraction 7.5 normal eta left-parenthesis 0.538 plus 0.09 ln left-parenthesis z slash z 0 right-parenthesis right-parenthesis Superscript normal p Baseline u Superscript asterisk Baseline Over 1 plus 0.156 ln left-parenthesis u Superscript asterisk Baseline slash f period z 0 right-parenthesis EndFraction

      (2.16)StartLayout 1st Row 1st Column normal eta 2nd Column equals 1 minus 6 italic f z slash u Superscript asterisk EndLayout

      (2.17)StartLayout 1st Row 1st Column normal p 2nd Column equals normal eta Superscript 16 EndLayout

      This approximates to σu = 2.5u* close to the ground, but gives larger values at greater heights. The longitudinal turbulence intensity is then

      (2.18)normal upper I Subscript normal u Baseline equals sigma Subscript u Baseline slash upper U overbar

      The lateral (v) and vertical (w) turbulence intensities are given (ESDU 1985) by

      (2.19)normal upper I Subscript normal v Baseline equals StartFraction sigma Subscript normal v Baseline Over upper U overbar EndFraction equals normal upper I Subscript normal u Baseline left-parenthesis 1 minus 0.22 cosine Superscript 4 Baseline left-parenthesis StartFraction normal pi z Over 2 normal h EndFraction right-parenthesis right-parenthesis

      (2.20)normal upper I Subscript w Baseline equals StartFraction sigma Subscript w Baseline Over upper U overbar EndFraction equals normal upper I Subscript normal u Baseline left-parenthesis 1 minus 0.45 cosine Superscript 4 Baseline left-parenthesis StartFraction normal pi z Over 2 normal h EndFraction right-parenthesis right-parenthesis

      Note that specific values of turbulence intensity for use in design calculations are prescribed in some of the standards used for wind turbine design calculations, and these may not always correspond with the above expressions. For example, the now superseded Danish standard (DS 472 1992) specified

      (2.21)normal upper I Subscript normal u Baseline equals 1.0 slash ln left-parenthesis z slash z 0 right-parenthesis

      with Iv = 0.8 Iu and Iw = 0.5 Iu.

      The IEC edition 2 standard (IEC 61400‐1 1999) gives

      (2.22)normal upper I Subscript normal u Baseline equals normal upper I 15 left-parenthesis a plus 15 slash upper U overbar right-parenthesis slash left-parenthesis a plus 1 right-parenthesis

      where I15 = 0.18 for ‘higher turbulence sites’ and 0.16 for ‘lower turbulence sites’, with corresponding values of a of 2 and 3, respectively. For the lateral and vertical components, a choice is allowed: either Iv = 0.8 Iu and Iw = 0.5 Iu, or an isotropic model with Iu = Iv = Iw.

      Editions 3 (IEC 61400‐1 2005) and 4 (IEC 61400‐1 2019) of the IEC standard specify

      (2.23)normal upper I Subscript normal u Baseline equals normal upper I Subscript r e f Baseline left-parenthesis 0.75 plus 5.6 slash upper U overbar right-parenthesis

      where Iref = 0.16, 0.14, or 0.12 depending on the wind class. For lateral and vertical components, Iv must be at least 0.7Iu, and Iw at least 0.5Iu. Standard deviations are assumed constant with height, so the turbulence intensity will change with height as the mean wind speed changes due to wind shear.

      The earlier GL rules (GL 1993) simply specified 20% turbulence intensity, but the later edition (GL 2003) follows IEC edition 2.