Polymer Nanocomposite Materials. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527826506
Скачать книгу
S.H., Jung, S., Yoon, I.S. et al. (2018). Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30: e1800109.

      133 133 Zhang, Y.-Z., Lee, K.H., Anjum, D.H. et al. (2018). MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4: eaat0098.

      134 134 Zhu, D., Handschuh-Wang, S., and Zhou, X. (2017). Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5: 16467–16497.

      135 135 Huang, Y., Fan, X., Chen, S.C., and Zhao, N. (2019). Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29: 1808509.

      136 136 Nie, B., Huang, R., Yao, T. et al. (2019). Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 29: 1808786.

      137 137 Li, Y., Samad, Y.A., and Liao, K. (2015). From cotton to wearable pressure sensor. J. Mater. Chem. A 3: 2181–2187.

      138 138 Xue, F., Lu, Y., Qi, X.-d. et al. (2019). Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 365: 20–29.

      139 139 Dong, X., Wei, Y., Chen, S. et al. (2018). A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155: 108–116.

      140 140 Chen, Z., Hu, Y., Zhuo, H. et al. (2019). Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31: 3301–3312.

      141 141 Sun, Q.J., Zhao, X.H., Zhou, Y. et al. (2019). Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29: 1808829.

      142 142 Xia, K., Wang, C., Jian, M. et al. (2017). CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11: 1124–1134.

      143 143 Wu, N., Chen, S., Lin, S. et al. (2018). Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. J. Mater. Chem. A 6: 5065–5070.

      144 144 Bae, G.Y., Pak, S.W., Kim, D. et al. (2016). Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28: 5300–5306.

      145 145 Liu, Y.-F., Huang, P., Li, Y.-Q. et al. (2019). A biomimetic multifunctional electronic hair sensor. J. Mater. Chem. A 7: 1889–1896.

      146 146 Shi, J., Wang, L., Dai, Z. et al. (2018). Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14: 1800819.

      147 147 Jian, M., Xia, K., Wang, Q. et al. (2017). Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27: 1606066.

      148 148 Pan, L., Chortos, A., Yu, G. et al. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5: 3002.

      149 149 Park, J., Lee, Y., Hong, J. et al. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8: 4689–4697.

      150 150 Li, Y., Zheng, Y., Zhan, P. et al. (2018). Vapor sensing performance as a diagnosis probe to estimate the distribution of multi-walled carbon nanotubes in poly(lactic acid)/polypropylene conductive composites. Sens. Actuators, B 255: 2809–2819.

      151 151 Dai, K., Zhao, S., Zhai, W. et al. (2013). Tuning of liquid sensing performance of conductive carbon black (CB)/polypropylene (PP) composite utilizing a segregated structure. Composites Part A 55: 11–18.

      152 152 Li, Y., Pionteck, J., Pötschke, P., and Voit, B. (2020). Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites. Mater. Des. 187: 108383.

      153 153 Gao, J., Wang, H., Huang, X. et al. (2018). Electrically conductive polymer nanofiber composite with an ultralow percolation threshold for chemical vapour sensing. Compos. Sci. Technol. 161: 135–142.

      154 154 Li, Y., Liu, H., Dai, K. et al. (2015). Tuning of vapor sensing behaviors of eco-friendly conductive polymer composites utilizing ramie fiber. Sens. Actuators, B 221: 1279–1289.

      155 155 Huang, X., Li, B., Wang, L. et al. (2019). Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11: 24533–24543.

      156 156 Feller, J.F., Lu, J., Zhang, K. et al. (2011). Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. J. Mater. Chem. 21: 4142–4149.

      157 157 Zhao, S., Zhai, W., Li, N. et al. (2014). Liquid sensing properties of carbon black/polypropylene composite with a segregated conductive network. Sensor. Actuat. A: Phys 217: 13–20.

      158 158 Liu, X., Guo, Y., Ma, Y. et al. (2014). Flexible, low-voltage and high-performance polymer thin-film transistors and their application in photo/thermal detectors. Adv. Mater. 26: 3631–3636.

      159 159 Cui, X., Chen, J., Zhu, Y., and Jiang, W. (2018). Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 6: 9354–9362.

      160 160 Li, Q., Siddaramaiah, N.H., Kim, G.-H., and Yoo, J.H.L. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B 40: 218–224.

      161 161 Zhang, X., Zheng, X., Ren, D. et al. (2016). Unusual positive temperature coefficient effect of polyolefin/carbon fiber conductive composites. Mater. Lett. 164: 587–590.

      162 162 Lu, C., Hu, X.-n., He, Y.-x. et al. (2012). Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym. Bull. 68: 2071–2087.

      163 163 Xi, Y., Yamanaka, A., Bin, Y., and Matsuo, M. (2007). Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites. J. Appl. Polym. Sci. 105: 2868–2876.

      164 164 Asare, E., Basir, A., Tu, W. et al. (2016). Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. Nanocomposites 2: 58–64.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7Sc4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxsl RxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAABBwAAABAAAAAB AAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAA AENscm0AAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAEgBQAHIA aQBuAHQAIAB0AG8AIABFAHYAZQByAG4AbwB0AGUAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAA DABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAA AAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDT