Эта странная математика. На краю бесконечности и за ним. Дэвид Дарлинг. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дэвид Дарлинг
Издательство: Corpus (АСТ)
Серия: Элементы 2.0
Жанр произведения: Математика
Год издания: 2018
isbn: 978-5-17-119879-4
Скачать книгу
лет назад, до того, как пришла кому-то в голову? Платоники считают, что математические объекты, такие как числа, геометрические фигуры и отношения между ними, существуют независимо от нас, наших мыслей, языка и физической вселенной. Они, правда, не уточняют, в каких таких неземных сферах обитают эти объекты, но убеждены, что те каким-то образом реально существуют. Большинство математиков, надо признать, разделяют эту точку зрения, а значит, считают, что математические истины открывают, а не изобретают. Справедливо, впрочем, и то, что большинству математиков, скорее всего, нет дела до всей этой философии – их вполне устраивает просто заниматься наукой, точно так же как большинство физиков, как работающих в лаборатории, так и решающих теоретические задачи, вряд ли волнуют проблемы метафизики. И все же постижение истинной природы вещей – в нашем случае математических объектов – занятие интересное, пусть даже нам не суждено найти окончательного ответа. Прусский математик и логик Леопольд Кронекер считал, что человеку были даны только целые числа: по его выражению, “целые числа создал Господь Бог, остальное – дело рук человеческих”. Английский астрофизик Артур Эддингтон пошел еще дальше, сказав: “Математики не существует, пока мы ее не создаем”. Наверняка люди и дальше будут спорить о том, что же такое математика – открытие, изобретение или, возможно, сочетание первого и второго, порожденное синергизмом разума и материи. Вряд ли на этот вопрос есть простой ответ.

      Одно ясно: в математике единожды доказанное положение навсегда становится истиной, не допускающей споров и не подверженной влиянию субъективных факторов. “Я люблю математику, – заметил Бертран Рассел, – за то, что в ней нет ничего человеческого, за то, что ее ничего, в сущности, не связывает ни с нашей планетой, ни со всей этой случайной вселенной”. Давид Гильберт высказал похожую мысль: “Математика не знает рас и географических границ; для математики весь культурный мир представляет собой единую страну”. Эта беспристрастность, универсальность математики – ее важнейшее достоинство, которое, однако, никак не умаляет ее эстетической привлекательности для человека с наметанным глазом. “Красота – самый первый критерий; для некрасивой математики в мире нет места”, – заявил английский математик Годфри Харолд Харди. Ту же мысль, но с точки зрения теоретической физики высказал Поль Дирак: “Природе присуща та фундаментальная особенность, что самые основные физические законы описываются математической теорией, аппарат которой обладает необыкновенной силой и красотой”[1].

      Но у универсальности математической науки есть и обратная сторона: она может показаться холодной и стерильной, лишенной страсти и чувства. В результате может оказаться, что, хотя разумные существа иных миров и пользуются той же математикой, что и мы, это не самый лучший язык для общения на волнующие нас темы. “Многие предлагают использовать математику для общения с инопланетянами”, – прокомментировал


<p>1</p>

Визгин В. П. “Догмат веры” физика-теоретика: “предустановленная гармония между чистой математикой и физикой” // Проблема знания в истории науки и культуры. СПб.: Алетейя, 2001. – Здесь и далее прим. перев., если не указано иное.