Attualmente è noto che l’emisfero sinistro è responsabile del riconoscimento di gruppi di lettere che formano parole e gruppi di parole che formano frasi, sia nella lingua parlata che scritta; è implicato anche nella numerazione, nella matematica e nella logica.
Per quanto riguarda l’elaborazione del linguaggio, ogni emisfero è specializzato in un aspetto diverso, quindi l’emisfero sinistro interviene nel riconoscimento dei modelli linguistici e matematici; mentre l’emisfero destro partecipa, in un certo grado, al livello di comprensione verbale.
Quando viene colpito è il lobo parietale, che è il centro delle informazioni sensibili, con un ruolo di primo piano nel linguaggio, si verifica la comparsa di discalculia (problemi con la matematica), dislessia (problemi con il linguaggio), afasia (problemi di pronuncia), aprassia (problemi di movimento), agnosia (problemi di riconoscimento); ma la matematica è molto di più che numeri e quantità, poiché implicano un’elaborazione di questi. Questa materia verrà insegnata dalle basi, aritmetica (proprietà dei numeri, calcolo numerico, operazioni numeriche), algebra (con variabili, equazioni, calcolo, ipotesi e previsioni, tutte basate sul linguaggio algebrico), geometria (o trigonometria euclidea, o analitica, legata alla fisica), probabilità e statistica (a fini sia descrittivi che predittivi) e calcolo differenziale e integrale (su fenomeni che cambiano nel tempo come nell’economia).
Il cervello è appositamente progettato per raccogliere e analizzare le informazioni esterne e interne, elaborarle ed emettere una risposta, iniziata dai sensi, grazie ai recettori che trasmettono le informazioni al cervello una volta superato il filtro attenzionale. Informazioni che vengono distribuite e analizzate separatamente per essere successivamente integrate e confrontate con tracce di memoria esistenti e quindi generare nuova conoscenza. Quindi l’informazione ricevuta deve essere “convertita” in percezione, per la quale richiede un certo livello di consapevolezza e attenzione, aspetto che funge da primo filtro per “ignorare” e “dimenticare” informazioni ridondanti e irrilevanti.
Nonostante quanto sopra, è stato possibile verificare come alcune sensazioni abbiano i propri meccanismi di attenzione, potendo parlare di attenzione visiva, attenzione uditiva…quindi, l’attenzione visiva comporterà movimenti di orientamento e ricerca di “fonti” di origine della stimolazione coinvolgendo la regione superiore e inferiore del lobo parietale, le aree visive frontali e subcorticali come il collicolo superiore, il nucleo pulvinare e il reticolare del talamo. Ma è stato verificato che per alcuni soggetti esistono anche meccanismi specializzati come nel caso dell’attenzione matematica, dove interviene il sistema parietale bilaterale posteriore-superiore, che consente l’orientamento spaziale e non spaziale nel sistema di rappresentazione mentale delle quantità. Pertanto, si può dire che il cervello è pronto a occuparsi della matematica e quindi ad avviare il processo di scomposizione e analisi di tali informazioni.
Diverse sono le teorie che hanno cercato di rendere conto del rapporto tra matematica e cervello, quindi dall’approssimazione dei quadranti cerebrali, dove si separa in base al rapporto tra la corteccia (sinistra e destra) e il sistema limbico (sinistra e destra) dando così origine ad un individuo con maggiore predominio di:
- Corticale destro, sarebbe più intuitivo, inclusivo, spaziale e fantasioso, optando per innovazione, creatività e ricerca.
- Corticale sinistro, sarebbe più logico, critico, analitico e realistico, optando per problem solving, matematica e finanza.
- Limbico destro, sarebbe più comunicativo, musicale, empatico ed espressivo, optando per il contatto umano, l’insegnamento e l’espressione orale e scritta.
- Limbico sinistro, sarebbe più sequenziale, dettagliato, amministratore e pianificatore, optando per amministrazione e gestione, essendo un buon oratore e lavoratore.
La persona predisposta alla matematica sarebbe quella che ha una dominanza corticale sinistra, che faciliterebbe questo lavoro, e consentirebbe un maggiore e migliore sviluppo professionale nelle aree legate ai numeri. Ma sebbene si sappia che queste dominazioni esistono, possono essere considerate parte dello sviluppo della cultura e della pratica, che, grazie alla neuroplasticità, renderà possibile che ci siano persone meglio preparate di altre per compiti matematici. Quindi se mettiamo due individui di fronte a un problema matematico, uno con laurea umanistica e un altro con laurea scientifica, ci si aspetterebbe che il secondo avesse una maggiore rete di connessioni neurali, che faciliterebbe il consumo di risorse, al momento di eseguire calcoli matematici, e quindi, alla fine, potrebbe dare la risposta corretta molto prima, nella risoluzione del problema posto, a differenza dell’altro, che ha percorsi e neuroni sviluppati per le lettere.
Si può quindi parlare di cervello matematico, o almeno di predisposizione alla matematica nel cervello per chi ci ha lavorato fin dall’infanzia, così come per altri ambiti in cui lo sviluppa, grazie alla didattica e all’istruzione che riceve fin da giovane e che accompagnerà gran parte dello studente che progressivamente aumenterà in difficoltà per le materie collegate alla matematica, sia quantitativamente che qualitativamente. Tutto ciò darà forma al pensiero matematico astratto, grossolano con capacità di memoria, lettura, attenzione, metacognitive e di autoregolazione, che consentiranno lo sviluppo di tutte le potenzialità in questo settore.
Ma le neuroscienze non solo ci dicono quando il cervello funziona in modo redditizio per quanto riguarda la matematica, ma anche quando sorgono problemi come nel caso dell’acalculia, identificata per la prima volta da Lewandowski e Stadelman nel 1908 che dà conto di alterazioni semantiche sulle quantità, deficit nella comprensione ed espressione dei numeri e problemi nei calcoli matematici. Quando l’acalculia è accompagnata anche da disorientamento destro-sinistro, agrafia e agnosia digitale, si parla di sindrome di Gerstmann, che influenza l’apprendimento della matematica di base (somma, sottrazione, moltiplicazione e divisione) e non tanto matematica avanzata quanto l’algebra, la trigonometria o la geometria, senza influenzare qualsiasi altra area del linguaggio.
Pertanto, le informazioni riguardanti la lesione neuronale ci consentono di conoscere quali aree del cervello sono coinvolte nella manipolazione del numero. Per quanto riguarda la sua rappresentazione, sono state stabilite tre tipologie: araba (1, 2, 3…), romana (I, II, III…); verbale (“uno” in italiano, “one” in inglese, “un” in francese…) o scritto (quarantacinque; 45…), e può anche essere astratto (collegato a grandezze) o adempiere ad una funzione nominale, riferendosi a ad una conoscenza enciclopedica (1492 data della scoperta dell’America da parte di Colombo). Aspetti strettamente correlati tra loro, quindi un numero scritto può rappresentare una quantità e a sua volta essere una conoscenza specifica, nonostante la loro apparente interconnessione, i pazienti con afasia, agrafia o alessia ci hanno permesso di capire come siano processi indipendenti, uno di essi può essere colpito, lasciando gli altri intatti.
Per quanto riguarda le basi neuronali, è stato dimostrato come la comprensione e l’espressione del numero in forma verbale si trova nell’area del linguaggio, nell’emisfero dominante, solitamente il sinistro, nel giro angolare. La rappresentazione dei numeri viene invece elaborata nella corteccia occipito-temporale ventrale media e nel giro fusiforme. Per quanto riguarda la rappresentazione astratta delle quantità, i solchi intraparietali sono coinvolti in modo biemisferico.
Seguendo il modello a triplo codice chiamato “neuro-funzionale” (Dehaene & Cognition, 1995), ci sono tre casi in cui i numeri vengono manipolati mentalmente. Quindi un input verbale attiva una rappresentazione verbale che è identificata dalle sue cifre o con una rappresentazione di quantità, quindi la parola “una dozzina” verrà tradotta come “una” + “dozzina”. Ma allo stesso modo la lettura di una cifra “1492” provocherà l’identificazione di cifre per poi trasformarla in una rappresentazione verbale ed enunciarla a parole attraverso un output, per il quale sono richieste due attività o conoscenze fondamentali:
- Manipolazione interna di quantità, che include sia comprensione numerica (di confronto, prossimità…) che aritmetica con elaborazione