The Scientific Basis of National Progress, Including that of Morality. Gore George. Читать онлайн. Newlib. NEWLIB.NET

Автор: Gore George
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 4064066142681
Скачать книгу
researches of Fourcroy, Vauquelin, Pelletier, and others, in the discovery of quinine; and of many other chemists who discovered numerous remedial substances. By means of the discoveries of Oersted and others, embodied in the telegraph, manufacturers are enabled to anticipate the state of the markets and of the weather, and editors are enabled to obtain the earliest news.

      Suppose that Gay Lussac, in 1815, had not discovered cyanide of potassium, and that it had never been discovered, it is highly probable that the manufacturing returns of Birmingham and Sheffield would be much less in amount at the present time than they are, simply because there is no other known substance with which the electro-plating of base metals with gold and silver can be satisfactorily effected. Or suppose that sal-ammoniac, chloride of zinc, or other soldering agents had not been discovered, the extensive and so-called "galvanizing" process could not have been effected, because without those substances the iron articles immersed in the melted zinc would not have received an adhesive metallic coating.

      On the other hand, science has in various cases rendered obsolete some manufactures and superseded old customs, comforts and conveniences. We have ceased, or almost so, to use tinder-boxes, snuffers, sulphur matches, rush-lights, tallow candles, sedan chairs, stage coaches, the ancient water-bucket and well, and even the comparatively modern pump; coal fires also are gradually being superseded by fires of gas, and articles formed of solid silver are now being replaced by those of electro-plate; canals have also to some extent been supplanted by railways. But in all these cases science has supplied us either with something better or more suited to our present wants.

      The great pecuniary benefits arising from the applications of science are generally reaped in the first instance by the great manufacturers, agriculturists, merchants, and capitalists. Countless fortunes have been made by means of processes and manufactures based upon scientific discovery. The pecuniary benefits of calico printing, bleaching, dyeing; of the great manufactures of cotton, iron, pottery, beer, sugar, glass, spirits, vinegar, gutta-percha, india-rubber, gun cotton, the numerous metals, machinery, electro-plate, washing soda, German silver, brass, phosphorus, manures, the common acids, numerous chemicals, and a multitude of other substances and articles, have been extremely great. More than eighteen hundred million pounds of sulphuric acid alone are manufactured in Europe yearly. The pecuniary advantages of the use of the electric telegraph and railways to merchants, the gains of capitalists by monies invested in railways, telegraphs, steam-ships, cotton-mills, gas-works, iron shipbuilding, engineering, and other great applications of science, have been enormous. The annual gas rental of London alone amounts to more than two millions sterling; and even in Birmingham the produce of gas is more than twenty-five hundred millions of cubic feet yearly. The amount of capital expended in the construction of railways only in this country, has been estimated at more than seven hundred millions of pounds, and the total receipts upon British railways has reached forty-three millions per annum. In the year 1875 our railways carried 200 million tons of goods, and consumed ten million tons of coal; the Great Northern Railway alone consumes 5,000 tons of coal each week. In the year 1877 there existed in the entire world about 198,000 miles of railway, the whole having been constructed since the year 1825. In the year 1880 six hundred millions of journeys were made by passengers on British railways; and the stock of those railways included 13,174 locomotives; 369,694 waggons, 28,717 passenger carriages, and 22,712 other vehicles. The London and North-Western Railway Company alone possessed, in the year 1873, no less than 1,900 locomotive engines, each of a value of nearly two thousand pounds; 4,000 carriages and 36,000 waggons; and it has been estimated by competent authorities, that there are in the world 200,000 steam-engines, having a total power of twelve million horses, or 100 million men. The number of cotton spindles on the whole Earth is estimated at about 71¼ millions. In the United States of America there are about five thousand telegraph stations, and 75,000 miles of line, which transmit yearly about 11,500,000 messages.—The telegrams of Great Britain number about one-fourth of a million per week. The world's telegrams during the year 1877 numbered nearly 130 millions; and the world's letters about 3,300 millions, or 9¼ millions each day. Even the little phosphorus match is being manufactured and consumed at a rate estimated at more than ten thousand millions daily.

      Much of the wealth of this country, resulting from science, has been very easily obtained by its possessors. That acquired by means of our coal has especially been obtained without commensurate effort. The amount of that substance raised in Great Britain during the year 1876 was 734 millions of tons. To draw upon a great stock of that mineral is like drawing money from a bank, because coal, unlike any other abundant substance (except wood and petroline), contains in itself an immense store of energy, which is evolved as heat during combustion, and may be utilized. Each piece of coal contains sufficient energy to lift its own weight twenty-three hundred miles, but it costs only a small proportion of that power to extract and raise it from the mine. I do not mean by these remarks to imply that the wealth accruing from this great store of power in coal is derived chiefly by the owners of coal mines.

      This acquisition of wealth without commensurate sacrifice is not an unqualified advantage; it constitutes a debt to nature, which upon the great principle of causation, and of equivalency of action and reaction, must sooner or later be repaid. Judging from the infallibility of the action of those laws, and the signs of the times, this nation is now beginning to repay in the form of emigration of trade to other lands, and of relatively less rapid national advance, the debt incurred by undue pecuniary success. An excess of money or power obtained without equivalent effort, fails to properly develop the intelligence of its possessors, and nations have been hastened to ruin in this way. Our great success in getting money has attracted many from the pursuit of knowledge, and our love of knowledge has not increased as fast as our wealth. The wealth of the upper classes has, by decoying from study undisciplined young men at our old Universities, kept down the general standard of scientific instruction throughout the country, and, by leading to neglect of scientific research, is now retarding our progress in arts, manufactures, commerce, and civilization. The consequent relative poverty of the working classes is also producing similar effects by retarding education, and contributing towards the great deficiency of skilled labour, of which our inventors, manufacturers, and others so strongly complain in the working of their scientific processes. Had a just share of the great amount of money, gained by the application of science to useful purposes, been applied to the payment and maintenance of scientific discoverers and inventors, as it should have been, the general standard of scientific education would have been higher, the poor would have had more employment and money, and the happiness and civilization of all would have been greater.

      In a usual way the greatest pecuniary benefits, arising from science, sooner or later go to enrich the possessors of land. The demand created for coal, iron, lime, building-stone, and all the metals, by the industrial applications of science, has greatly increased the value of land under which those substances lie. The value of cultivated land has been everywhere increased by the discoveries of agricultural chemistry. Land has also been required for railways in nearly all parts of the kingdom, and has thereby been considerably raised in value. Discoveries produce inventions, inventions give rise to processes and manufactures, the employment of workmen and others, and the erection of workshops and dwellings, and these have rapidly increased the value of building ground. In Lancashire the value of such ground has been greatly increased by the inventions of the steam-engine and machinery, the discovery of chlorine, and their application to cotton manufacture. In all the great manufacturing districts, and in all the chief centres of industry, a similar result has occurred. Wherever a railway has been constructed, the value of land has also increased in consequence of the increased facilities of communication. All these great additions to the value of land are largely due to the unpaid labours of scientific discoverers, and it may be said that this nation has largely gained its wealth, and is still living in a great degree on the products of those labours. Those great additions to the value of land are also permanent, are continually increasing, and are largely independent of any exertions on the part of the owners. That many other influences, besides that of science, have contributed to the development of our manufacturing and commercial prosperity is also true, but it would be foreign to the subject of the present chapter to point them out.

      It is a fallacious argument to say that scientific discovery and increased value of land are only remotely connected together, a cause as certainly produces its effect, however many connections lie between them,