The chief object of this book is to disseminate more correct ideas respecting the importance of new positive knowledge, and the duties of society in relation to it; and a further object is to assist in maintaining Birmingham in the front rank of intellectual, social and moral advance, in accordance with its motto "Forward."
CHAPTER I.
———
The Scientific Basis of Material Progress.
During the last one hundred years this nation has advanced with unexampled speed. More wealth has been accumulated by Englishmen since the commencement of the present century, than in all preceding time since the period of Julius Cæsar; one of the causes of this has been the discovery of new truths of science, and their subservience to useful purposes by means of invention. The great manufacturing success of this country has been largely due to those applications of science, which have enabled us to utilise our abundant stores of coal and iron-ore, in steam engines, machinery, and a multitude of mechanical, physical, and chemical processes; also to the discovery of electro-magnetism and its application in the electric-telegraph, etc. And had it not been for these and other adaptations of scientific knowledge, we should have competed in vain with the cheaper labour and longer days of toil of continental nations. Other great causes, such as our insular position, suitable climate, freedom, geographical position, etc., etc. have, however, also contributed to the result. Commerce also in its turn has done vast things for mankind.
The purely scientific knowledge we possess was discovered almost entirely by means of original research, and to only a small extent by persons engaged in industrial occupations. Probably not two per cent. of all the important discoveries in pure science were made in manufactories; the scientific experiments which are made in such establishments are usually of the nature of invention, not of discovery, and are not often published, because it is a usual object with men of business to retain as much as possible of the pecuniary benefit of their labours to themselves. Whilst it is the object of a business man to monopolise special knowledge; that of the scientific man is to diffuse it, in order that all mankind may be benefited and helped to improve.
Discoveries in science are, however, occasionally made by practical men engaged in technical employments. The hydro-electric machine originated in this way, a man at Newcastle was attending to a steam boiler, and found that he received electric shocks when he touched the boiler. This circumstance was investigated by his employer, Mr. Armstrong, a scientific man, and led him to construct the hydro-electric machine. The accumulation of electricity in submarine telegraph cables was first observed at the Gutta-Percha Company's works London. It was noticed on testing a cable by means of a voltaic battery (the cable being submerged in water) that discharges of electricity flowed from the cable after the battery was removed; this circumstance was investigated by Faraday, and led to improvements in submarine telegraphy. In each of these instances the same general method as that used by scientific discoverers was however employed, viz., new experiments were made (though not intentionally) by putting matter and its forces under new conditions, and new results were observed.
Nearly all great modern scientific discoveries have been made by teachers of science and others, who spend a large portion of their lives in experimental investigation, searching for new truths, and not by persons who have hit upon them by accident. The greatest discoveries in physics and chemistry in modern times, were made chiefly by such men as Newton, Cavendish, Scheele, Priestley, Oersted, Volta, Davy and Faraday: all great workers in science.
It is either by observing matter and its forces under new conditions or from a new aspect, that nearly all discoveries are made; thus Priestley placed some oxide of mercury in an inverted glass vessel, and heated it by means of the Sun's rays and a lens, and discovered Oxygen. This substance was nearly discovered by Eck de Sulsbach three hundred years before; he heated six pounds of an amalgam of silver and mercury, and converted the latter metal into a red oxide like cinnabar, and he remarked, "a spirit is united with the metal, and what proves it is this, that this artificial cinnabar submitted to distillation, disengages that spirit." The "spirit" was evidently oxygen.
Some discoveries are made by observing the phenomena of bodies placed under special conditions by those operations of nature over which we have little or no control. All our knowledge of Astronomy, and much of that of geology and physiology, was acquired in this way.
Nearly all modern discoveries of importance in physics or chemistry require long and difficult investigations to be made in order to completely establish their truth. When Crookes discovered Thallium, he saw the first sign of its existence in a momentary flash of green light in a spectroscope, but he had to expend upon the subject several years of most difficult labour, and a considerable sum of money, in order to prove the correctness of his suspicion that he had discovered a new metal. M. Lecocq de Boisbaudran discovered the metal Gallium and Bunsen discovered Rubidium and Caesium in a similar manner.
Discoveries in science, are usually made, not by trying to obtain some valuable commercial or technical result, but by making new, reliable, and systematic investigations. By investigating the chemical action of electricity upon saline bodies, Sir Humphrey Davy isolated sodium and magnesium, which has led to the establishment at Patricroft near Manchester, of the manufactures of those metals. By the abstract researches of Hofmann and others upon Coal-tar, many new compounds were discovered, and the extremely profitable manufacture of the splendid coal-tar dyes was originated.
Scientific discovery is the most valuable in its ultimate practical results when it is pursued from a love of truth as the ruling motive, and any attempt to make it more directly and quickly remunerative by trying to direct it to immediately practical objects, decreases the importance of its results, diminishes the spirit of inquiry, and sooner or later reduces it to the character of invention. The greatest practical realities of this age had their origin in a search after important truths entirely irrespective of what utilities they might lead to.
I do not intend by these remarks to imply that any new trades or improvements in manufactures have been or can be effected without the labours of inventors and practical men, but that there should be a more judicious division of labour: one man to discover new truths, another to put them into the form of practical inventions, and the business man to work them; because it is proved by experience, that in nearly all cases these different kinds of labour require men of widely different habits of mind, and that the faculties of discovery, invention, and practical working are very rarely united in one man.
Scientific investigations however, made in a manufactory, for the purpose of ascertaining the various sources of loss of materials, the circumstances which affect the amount or quality of the product; or made with the object of substituting cheaper or more suitable materials, or for varying their proportions, or for many other kindred objects, have in many cases resulted in great benefit to the manufacturer, and have formed the basis of successful patents. Some of the large brewers, chemical manufacturers, candle companies, and many others, constantly employ scientific men in this way to examine their materials, processes and products, and keep them acquainted with the progress of discovery and invention in relation to their own particular trades.
No