The Glycerine Barometer, invented by Mr. Jordan, and in use at the Times office, registers as more than one inch movements which on the mercurial thermometer are only one-tenth of an inch, and so are very distinctly visible. The specific gravity of pure glycerine is less than one-tenth that of mercury, so the mean height of the glycerine column is twenty-seven feet at sea level. The glycerine has, however, a tendency to absorb moisture from the air, but Mr. Jordan, by putting some petroleum oil upon the glycerine, neutralized that tendency, and the atmospheric pressure remains the same. A full description of this instrument was given in the Times of 25th October, 1880.
Fig. 52.—The principle of the diving-bell.
The uses of the barometer are various. It is employed to calculate the heights of mountains; for if a barometer at sea level stand at 30", it will be lower on a mountain top, because the amount of air at an elevation of ten thousand feet is less than at the level of the sea, and consequently exercises less pressure, and the mercury descends. [The pressure is on the bulb of mercury at the bottom, not on the top, remember.]
The pressure of the air at the tops of mountains sometimes decreases very much, and it is not sufficiently dense for perfect respiration, as many people find. Some climbers suffer from bleeding at the nose, etc., at great altitudes. This is occasioned by the action of the heart, which pumps with great force, and the outward pressure upon the little veins being so much less than usual, they give way.
Fig. 53.—Diver under water.
Many important instruments depend upon atmospheric pressure. The most important of these is the pump, which will carry us to the consideration of water and Fluids generally. The fire-engine is another example, but we will now proceed to explain the diving-bell already referred to.
Fig. 52 represents the experiment of the diving-bell, which is so simple, and is explained below. It belongs to the same category of experiments as those relating to the pressure of air and compression of gas. Two or three flies have been introduced into the glass, and they prove by their buzzing about that they are quite at their ease in the rather confined space.
The Diving-Bell in a crude form appears to have been used as early as 1538. It was used by two Greeks in the presence of the Emperor Charles V., and numerous spectators. In the year 1720 Doctor Halley improved the diving-bell, which was a wooden box or chamber open at the bottom. Air casks were used to keep the inmate supplied with air. The modern diving-bell was used by Smeaton in 1788, and was made of cast iron. It sinks by its own weight. The pressure of the air inside is sufficient to keep the water out. Air being easily compressed, it is always pumped in to keep the hollow iron “bell” full, and to supply the workmen. There are inventions now in use by which the diver carries a supply of air with him on his back, and by turning a tap can supply himself for a long time at a distance from the place of descent, and thus is able to dispense with the air-tube from the boat at the surface. This apparatus was exhibited at the Crystal Palace some years ago.
Fig. 54.—The Hand Fire-Engine
The Pump.
We have seen in the case of the Water Barometer that the pressure of the air will sustain a column of water about thirty feet high. So the distance between the lower valve and the reservoir or cistern must not be more than thirty-two feet, practically the distance is about twenty-five feet in pumps.
We can see by the illustration that the working is much the same as in the air-pump. The suction pipe B is closed by the valve C, the cylinder D and spout E are above, the piston rod F lifts the air-tight piston in which is a valve H. When the piston is raised the valve C opens and admits the water into the cylinder. When the piston is depressed the valve C is closed, the water already in forces H open, and passing through the piston, reaches the cylinder and the spout (fig. 55).
The hand fire-engine depends upon the action of compressed air, which is so compressed by pumping water into the air chamber a. The tube is closed at g, and the pumps e e drive water into the air chamber. At length the tap is opened, and the air drives the water out as it is continually supplied (fig. 54).
Compressed air was also used for driving the boring machines in the Mount Cenis tunnel. In this case also the air was compressed by water, and then let loose, like steam, to drive a machine furnished with boring instruments.
Fig. 55..—The Pump.
A pretty little toy may be made, and at the same time exemplify an interesting fact in Physics. It is called the ludion, and it “lies in a nut shell” in every sense. When the kernel has been extracted from the shell, fasten the portions together with sealing wax, so that no water can enter. At one end O, as in the illustration, leave a small hole about as large as a pin’s head; fasten two threads to the sealing wax, and to the threads a wooden doll. Let a weight be attached to his waist. When the figure is in equilibrium, and will float, put it into a jar of water, and tie a piece of bladder over the top. If this covering be pressed with the finger, the doll will descend and remount when the finger is removed. By quick successive pressure the figure may be made to execute a pas seul. The reason of the movement is because the slight cushion of air in the upper part of the vase is compressed, and the little water thus caused to enter the nut shell makes it heavier, and it descends with the figure (fig. 56).
We have now seen that air is a gas, that it exercises pressure, that it possesses weight. We know it can be applied to many useful purposes, and that the air machines and inventions—such as the air-pump and the “Pneumatic Despatch”—are in daily use in our laboratories, our steam engines, our condensed milk manufactories, and in many other industries, and for our social benefit. Compressed air is a powerful motor for boring machinery in tunnels where steam cannot be used, even if water could be supplied, for smoke or fire would suffocate the workers. To air we owe our life and our happiness on earth.
Pneumatics, then, deals with the mechanical properties of elastic fluids represented by air. A gas is an elastic fluid, and differs very considerably, from water; for a gas will fill a large or small space with equal convenience, like the genii which came out of the bottle and obligingly retired into it again to please the fisherman. We have seen that the pressure of the air is 14⅘ per square inch at a temperature of 32°. It is not so easy to determine the pressure of air at various times as that of water. We can always tell the pressure of a column of water when we find the height of the column, as it is the weight of so many cubic inches of the liquid. But the pressure of the atmosphere per square inch at any point is equal to the weight of a vertical column of air one inch square, reaching from that point to the limit of the atmosphere above it. Still the density is not the same at all points, so we have to calculate. The average pressure at sea level is 14·7 per square inch, and sustains a column of mercury 1 square inch in thickness, 29·92, or say 30 inches high. These are the data upon which the barometer is based, as we have seen.
Fig: 56.—The “Ludion.”
In our article upon “Chemistry” we will speak more fully of the atmosphere and of its constituents, etc.
CHAPTER VI.
ABOUT WATER—HYDROSTATICS AND HYDRAULICS—LAW OF ARCHIMEDES—THE BRAMAH PRESS—THE SYPHON.
At present we will