A System of Pyrotechny. James Cutbush. Читать онлайн. Newlib. NEWLIB.NET

Автор: James Cutbush
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4064066248871
Скачать книгу
fire, and the oldest for gunpowder, were found in a manuscript, preserved in the electoral library at Munich. Various copies of this manuscript were made. Bacon employed this writing, which was mentioned by Jebb, in the preface to his edition, from a copy preserved in the library of Dr. Mead. Whether the writer was Marcus Græcus, is of no moment; for Cardan observes, that the fire that can be kindled by water, or rather not extinguished by water, was prepared by Marcus Gracchus.

      The former Marcus, mentions two kinds of fire-works; and the composition, which he prescribes for both, is two pounds of charcoal, one pound of sulphur, and six pounds of saltpetre, well powdered and mixed together in a stone mortar.

      Friar Bacon, who lived three centuries after Græcus, was in possession of the recipe. It was concealed, however, from the people, veiled in mystery. In his treatise De Secretis Operibus Artis et Naturæ, &c. the secret of the composition is thus expressed: "sed tamen salispetræ, LURU MOPE CAN URBE et sulphuris; et sic facies tonitrum et corruscationem, si scias artificium." Luru mope can urbe, is the anagram for carbonum pulvere. Bacon supposes, that it was with a similar composition that Gideon defeated the Midianites, with only three hundred men. Besides the use of gunpowder in the 9th century, in the war between the Tunisians and the Moors, in which the former are said to have employed "certain tubes or barrels, wherewith they threw thunderbolts of fire," the Venetians employed it against the Genoese, and it was reprobated as a manifest contravention of fair warfare.

      Peter Mexia, in his "Various Readings," relates, that the Moors, being besieged, in 1349, by Alphonso the eleventh, king of Castille, discharged a kind of iron mortars upon them, which made a noise like thunder. This, with the sea-combat between the Tunisians and the Moors, stated on the authority of don Pedro, bishop of Leon, places the invention much earlier than by some writers.

      Polydore Virgil ascribes the invention of gunpowder to a chemist, who, having put some of his composition in a mortar, and covered it with a stone, was blown up, in consequence of its accidentally taking fire. The person here alluded to, according to Thevet, was a monk of Friburg, named Constantine Anelzen. Others, as Belleforet, with more probability, hold it to be Bartholodus Schwartz, or the black, who discovered it, as some say, about the year 1320. Du Cange, however, remarks, that there is no mention made of gunpowder in the registers of the chamber of accounts in France, as early as the year 1338. Roger Bacon knew of gunpowder, near one hundred years before Schwartz was born. (See the invention of cannon, in military fire-works, fourth part.)

      It is certain, that Albert de Bollstædt indicated the constituent parts of gunpowder, when he says, in his Mirabilis Mundi, "Ignis volans, accipe libram unam, sulphuris, libras duas, carbonas salicis, libras sex, salis petrosi, quæ tria subtilissime terantur in lapide marmorea; postea aliquid posterius ad libitum in tunica de papyro volante, vel tonitrum faciente ponatur.

      "Tunica ad volandum debet esse longa, gracilis, pulvere illo optime plena, ad faciendum vero tonitrum brevis, grossa et semiplena."

      Gunpowder was of a much weaker composition than that now in use, or that described by Marcus Græcus. Tartalgia, (Ques. and Inv. lib. 3, ques. 5), observes, that, of twenty-three different compositions, used at different times, the first, which was the oldest, contained equal parts of the three ingredients. When guns of modern construction came into use, gunpowder of the present strength was introduced.

      The strength of powder depends upon the proportions of the ingredients, they being pure; and Mr. Napier observes, (Trans. Royal Irish Academy, ii.) that the greatest strength is produced, when the proportions are, nitre, three pounds, charcoal, nine ounces, and sulphur, three ounces. The cannon powder was in meal, and the musket powder in grain.

      In the time of Tartalgia, the cannon powder was made of four parts of nitre, one of sulphur, and one of charcoal; and the musket powder of forty-eight parts of nitre, seven parts of sulphur, and eight parts of charcoal; or of eighteen parts of nitre, two parts of sulphur, and three parts of charcoal.

      The intimate mixture, therefore, and the determinate proportions of saltpetre, charcoal, and sulphur, form gunpowder; the different qualities of which, depend, as well upon the proportions which are used, as on the purity of the materials, and the accuracy with which they are mixed.

      Gunpowder is reckoned to explode at about 600° Fahr; but, if heated to a degree just below that of faint redness, the sulphur will mostly burn off, leaving the nitre and charcoal unaltered.

      The saltpetre should be perfectly refined, and entirely free from deliquescent salts; the sulphur as pure as possible, and, for that reason, a preference should be given, to that which is sublimed, or distilled; and the charcoal should be prepared in iron cylinders, as described under that head, from woods, which are light and tender, as the linden, willow, hazle, dogwood, etc.

      There is a considerable difference in the proportions used by different nations; but, from the many accurate and conclusive experiments of the French chemists, their formula is certainly the most perfect. In English powder, three-quarters of the composition are nitre, and the other quarter is made up of equal parts of charcoal and sulphur; but sometimes, to seventy-five parts of nitre, fifteen of charcoal is used, adding ten of sulphur. Their government powder is the same for cannon, as for small-arms.

      According to a number of experiments, made at Grenille, it was found, that the proportion of saltpetre in gunpowder, must be in a given ratio with the charcoal, so that the latter might effectually decompose it in the act of combustion; and hence the ratio is as 12 of the latter to 75 of the former, and these, with 12 of sulphur, are the proportions generally employed. Ruggeri (Pyrotechnie Militaire, p. 91,) gives, as the proportions, 12 parts of saltpetre of the third boiling, 2 parts of charcoal, and 1 part of sulphur. The proportions, used in Sweden, are 75 saltpetre, 9 sulphur, and 16 charcoal; in Poland, 80 saltpetre, 8 sulphur, and 12 charcoal; in Italy, 76 saltpetre, 12 sulphur, and 12 charcoal; in Russia, 70 saltpetre, 11 sulphur, and 181/2 charcoal; in Denmark, 80 saltpetre, 10 sulphur, and 10 charcoal; in Holland, 76 saltpetre, 12 sulphur, and 12 charcoal; in Prussia and Austria, 78 saltpetre, 11 sulphur, and 11 charcoal; and in Spain, 77 saltpetre, 111/2 sulphur, and 111/2 charcoal.

      According to Klaproth and Wolff, (Dictionnaire de Chimie, translated into French by MM. Lagrange and Vogel), Berlin powder is composed of three-quarters nitre; one-eighth sulphur, and one-eighth charcoal; Chinese powder, of 16 parts nitre, 6 charcoal, and 4 sulphur; Swedish powder, of 75 parts nitre, 16 sulphur, and 9 charcoal; the powder of Lissa, of 80 nitre, 12 sulphur, and 8 charcoal; and English powder, on the authority of Beckman, as follows: Powder for war, 100 parts of nitre, 25 charcoal, and 25 sulphur; musket powder, 100 nitre, 18 sulphur, and 20 charcoal; pistol powder, 100 nitre, 23 sulphur, and 15 charcoal; strong cannon powder, 100 nitre, 20 sulphur, and 24 charcoal; strong musket powder, 100 nitre, 15 sulphur, and 18 charcoal; and strong pistol powder, 100 nitre, 10 sulphur, and 18 charcoal. German powder, for war, is composed, generally, of 0.70 saltpetre, 0.16 charcoal, and 0.14 sulphur. A small portion of gum is sometimes added, to make the grain firmer; but such additions retard the combustion, and the effect.

      The addition of gum arabic, however small, must injure the quality of gunpowder, although it has the effect of making the grain firmer, and less liable to fall into meal powder. The grain is also made heavier, and less liable to absorb moisture. M. Proust, in his second memoir on gunpowder, mentions the use of icthyocolla, a fish glue, for the same purpose; and, nevertheless, speaks of some advantages that the gunpowder, prepared with it, possesses.

      It is observed by Mr. Coleman, of the Royal Powder Mills of Waltham abbey, that it is not exactly ascertained, whether there is any one proportion, which ought always to be adhered to, and for every purpose. We have no hesitation in believing, for our own part, that the French formula is the most correct, from the numerous experiments made at the royal manufactory at Essone, near Paris.

      A very considerable variation is found in the proportions of the ingredients of the powder of different nations and different manufactories. The powder made in England, is the same for cannon as for small arms, the difference being only in the size of the grains; but in France, it appears, that there were formerly six different sorts manufactured; namely, the strong and the weak cannon