A System of Pyrotechny. James Cutbush. Читать онлайн. Newlib. NEWLIB.NET

Автор: James Cutbush
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4064066248871
Скачать книгу
woods, we remarked, as the linden, willow, poplar, &c. furnish the lightest coal, and on that account are preferred. It is remarked, that tender wood, besides making a light, friable, and porous coal, is more combustible than ordinary hard, and more compact wood, and the coal that it furnishes leaves less residue after combustion.

      Many experiments have been made with coal prepared from different kinds of wood, with a view of ascertaining the kind best adapted for the manufacture of gunpowder. M. Letort, at the powder mills of Essonne, in France, instituted a number of experiments of this kind. He made gunpowder with the coal of several kinds of wood, and compared its effects by a mortar eprouvette. The result was, that the powder made with the coal of poplar, was the strongest; and the other powder, made with the coal of the linden, willow, &c. was of the same quality throughout. As to the second inquiry, it is hardly necessary to repeat, that for the complete and thorough carbonization of the wood, to produce at the same time coal of a uniform quality, the process of charring in iron cylinders or close vessels, is to be preferred. The point to be attended to is, to bring the wood to a complete state of ignition, and consequently to disengage all the volatile or fluid parts. When the gas (carburetted hydrogen) ceases to appear, it is a criterion that the operation is finished. This gas, it is to be recollected, will come over even after the whole of the wood is completely ignited. The first volatile product is the pyroacetic acid. Some saturate the acid liquor with chalk, and decompose the acetate of lime with sulphate of soda, and separate the acetic acid from the acetate of soda by distillation with sulphuric acid. The acetic acid is then tolerably pure, and may be diluted for use.

      It is observed, however, that when charcoal, prepared in iron cylinders, is designed for gunpowder, the last portion of vinegar and tar must be allowed to escape, and the reabsorption of the crude vapours prevented, by cutting off the communication between the interior of the cylinders and the apparatus for condensing the pyroacetic acid, whenever the fire is withdrawn from the furnace. If this precaution be not taken, the gunpowder made with the charcoal would be of inferior quality.

      On a large scale, when the object is also to prepare the vinegar of wood, a series of cast-iron cylinders, about four feet diameter, and six feet long, are built horizontally, in brick-work, so that the flame of one furnace may play round about two cylinders. Both ends project a little from the brick-work. One of them has a disc of cast iron well fitted and firmly bolted to it, from the centre of which disc an iron tube about six inches diameter proceeds, and enters at a right angle, the main tube of the refrigeration. The diameter of this tube may be from 9 to 14 inches, according to the number of cylinders. The other end of the cylinder is called the mouth of the retort. This is closed by a disc of iron, smeared round the edge, with clay lute, and secured in its place by wedges. The charge of wood for such a cylinder is about 8 cwt. The hard woods, oak, ash, birch, and beech, are alone used. Fir does not answer. The heat is kept up during the day-time, and the furnace is allowed to cool during the night. Next morning the door is opened, the coal removed, and a new charge of wood is introduced. The average product of crude vinegar is 35 gallons. Its total weight is about 300 lbs. But the residuary charcoal, according to Ure, (Chemical Dictionary), from whom we have taken this account, is found to weigh no more than one-fifth of the wood employed. The crude pyroacetic acid is rectified by a second distillation, in a copper still, in the body of which about 20 gallons of viscid tarry matter are left for every 100. Its acid powers are now superior to the best household vinegar in the proportion of 3 to 2. Ure observes, that by distillation, saturation with quicklime, evaporation of the liquid acetate to dryness, and gentle torrefaction, the empyreumatic matter is so completely dissipated, that on decomposing the calcareous salt by sulphuric acid, a pure, perfectly colourless, and grateful vinegar rises in distillation. Pyroacetic acid is said to be a powerful antiseptic. M. Monge, Dr. Jorg, and more lately, Mr. Ramsay, of Glasgow, have made experiments with it. Fish dipped in it have been preserved for many days, and meat treated in the same manner, has also been preserved from putrefaction.

      With respect to the pulverization of charcoal, the operation is so exceedingly simple, that we deem it unnecessary to notice it. It is obvious, that mortars, mills, &c. may be used, with fine or coarse sieves. For fire-works, charcoal is frequently pulverized in a leather sack, in the same manner as grained powder is reduced to meal-powder. It may be made either coarse or fine, to answer different purposes, by employing sieves of different kinds. Charcoal may be separated from nitre and sulphur, in gunpowder, by a simple process, which may be seen by referring to the section on gunpowder.

      The quantity of carbon in coal, is directly proportionate to the quantity required for the decomposition of nitrate of potassa, a fact necessary to be considered in the theory of the action of charcoal in gunpowder. Thus, Mr. Kirwan found that, 12.709 of carbon are necessary to decompose 100 of nitrate of potassa. It will be easy to deduce the quantity of carbon, in a given weight of coal, from the quantity of nitrate of potassa it is capable of decomposing. The experiment is made very readily by fusing in a crucible, five hundred or more grains of nitre, and when red-hot projecting by degrees the powdered coal on the nitre. When the detonation produced by one projection of coal has ceased, add a new portion till it produces no farther effect.

      Charcoal may be made intensely black, resembling ivory black, according to M. Denys-de-Montfort, (Bibliothèque Physico-Economique, for March 1815,) by pulverizing it very fine, mixing it with wine lees, and drying the mixture, and then subjecting it to a strong heat in a covered crucible, or other vessel.

      

      Having remarked, that the quality of gunpowder depends upon the purity of the materials, of which it is formed, and that they should be prepared in a state of purity; the subject that will now particularly claim our attention, is the proportions of the ingredients, their mixture, and the final preparation of gunpowder for use. To this, we purpose to add, the theory of its explosive effects, the different modes of proving it, and the experiments necessary to determine the quality of its respective ingredients, on all which we will be as brief as the importance of the subjects will admit. Previously, however, it may be interesting to notice the history of gunpowder, the invention of which has so completely changed the art of war.

      The history of gunpowder has been fully treated by many writers of eminence; but by none more largely, and, at the same time, more satisfactorily than by the French. Beckman, in his History of Inventions, is full on this subject. Our purpose is not to go into details, as it would enlarge our volume, to the exclusion, perhaps, of other and more important matter. We shall, therefore, confine ourselves to a few facts and observations.

      Notwithstanding much has been written on the subject, the original invention of gunpowder seems to be in obscurity. By whom, and at what time it was invented, is a question not fully settled. It is said to have been known in the east from time immemorial, and whatever claim Roger Bacon, who died in 1292, may have had to the discovery, or that he knew the properties of gunpowder, it is certain, that the use of fire-arms was then unknown in Europe.

      Professor Beckman, who examined all the authors extant on the origin of gunpowder, is of opinion, that it was invented in India, and brought by the Saracens from Africa to the Europeans, who improved the preparation of it, and employed it in war, as well as for small arms and cannon.

      M. Langles, who read a memoir on this subject to the National Institute, in 1798, observes, that the Arabians obtained a knowledge of gunpowder from the Indians, who had been acquainted with it from the earliest periods. The use of it was forbidden in their sacred books, the veidam or vede. It was employed in 690 at the battle near Mecca. As nitre was employed in all probability in the Greek fire, invented about the year 678, it is supposed, that that composition gave rise to the invention of gunpowder.

      Various prescriptions, or formulæ, have been given for the preparation of this fire. The oldest is by princess Anna Commena, in which, however, there is only resin, sulphur, and oil. Beckman observes, that the first certain mention of saltpetre will be found in the oldest account of the preparation of gunpowder, which, in his opinion, became known in the thirteenth century, about the same time that the use of the Greek fire, of which there were many kinds, began to be lost. The oldest information on this subject is to be found in the works of Albertus Magnus, and the writings of Roger Bacon. The true recipe for making