A System of Pyrotechny. James Cutbush. Читать онлайн. Newlib. NEWLIB.NET

Автор: James Cutbush
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4064066248871
Скачать книгу
lampblack, and sulphur, in the proportions we shall give hereafter, is similar in fact to that of gunpowder; for the lampblack acts in the same manner as common charcoal. As the lampblack, however, is extremely fine, and of a purer quality, its action on that account may be more powerful. While one portion of it decomposes the nitric acid of the nitre, with the oxygen of which it forms carbonic acid; another portion is thrown off in actual combustion, which puts on the appearance we have mentioned. Lampblack, it is to be observed, is a very impalpable powder, and takes fire with more facility than pulverised charcoal.

      The lampblack, therefore, is consumed both by the oxygen of the nitre, and the oxygen gas furnished by the atmospheric air. With respect to the sulphur, it facilitates the combustion, as it is more readily inflamed, and it forms in the process of combustion, sulphurous acid gas. Spur fire has been improved by the addition of steel filings: They produce very brilliant scintillations, in the combustion of which, oxide of iron is formed.

      With respect to the composition of rockets, the materials of which are united in different proportions, we will remark at this time, that as mealed powder, saltpetre, and charcoal constitute their principal ingredients, the chemical effect is similar to that we have stated. The combustion of such mixtures is attributed to the same cause; for whether we consider the composition of gunpowder, or the extra addition of saltpetre and charcoal, or the substitution of nitre for the gunpowder, the action must be the same, and therefore the products of combustion, similar. The action, however, as the effect evidently shows, is affected by the proportion of the substances employed, and by other circumstances which we shall notice hereafter. The different appearances, therefore, are owing entirely to the composition, as in rocket stars, rains, gerbes, tourbillons, &c.

      It may appear surprising, that the combustion of gunpowder with other substances, previously well rammed in cases, as in the rocket, will give to the case a momentum of great velocity and force. This motion is regulated by the balance of the rocket; and its power depends upon the size of the case, and the compactness of the composition. There is nothing new, however, in the fact; for it is perfectly familiar with every one, if we consider the recoil of a gun when fired, the powder having a resistance to overcome, as the ball, that the explosive effect of gunpowder is equal, and that the gases produced impel on all sides. Now the effect of a ball is as the difference of its weight with the weight of the gun; while the one being so much lighter is propelled forward with great celerity, and with a corresponding projectile force, the other suffers but little motion, which we term the recoil. The combustion of the materials, of which a rocket is composed, in a case, and in many fire-works where the cases are arranged on wheels, &c. which act on the rocket-principle, produces in like manner a force proportionate to the quantity of the material employed, and the manner it is driven in the case. The force in such instances is given to the rocket by the combustible substances; and the rocket itself when free, will ascend, or move in the direction required; or if small cases are fixed on wheels, which move on an axis, they communicate motion, as in the single vertical wheels, horizontal wheels, plural wheels, and the like, and may then be considered a moving power. That rockets are used as a missile weapon is well known. They were employed by the native troops of India against the British during the siege of Seringapatam in 1799. Mr. Congreve, the inventor of the war-rocket which bears his name, may have received his first idea of using rockets from this circumstance. This rocket will be described hereafter. The projectile force of the rocket is well calculated for the conveyance of case shot to great distances; because, as it proceeds, its velocity is accelerated instead of being retarded, as happens with every other projectile, while the average velocity of the shell is greater than that of the rocket only in the ratio of 9 to 8. The basis of this increase of power in the flight of rockets, induced Congreve to make a number of experiments, which resulted in their improvement, so far as they may be used of various calibres, either for explosion or conflagration, and armed both with shells and case shot. It may be sufficient to remark, that the 32 pr. rocket carcass, which has been used in bombardment, will range 3000 yards with the same quantity of combustible matter as that contained in the ten inch spherical carcass.

      M. de Buffon, (Mémoires de l'Académie, 1740,) wrote an ingenious essay on sky rockets, in which he states the appendages which may be put to them.

      If we inquire into the cause of the ascension of rockets, it will appear, that this apparently extraordinary effect, as we have already remarked, is owing to the decomposition, and the consequent production and disengagement of a large quantity of gaseous fluid and caloric. The impelling power, as in the large Congreve rocket, of which we had occasion to speak, is regulated in proportion to its size, and the accuracy with which the materials have been driven.

      The manner in which the flame, and, consequently, the gases are expelled from the orifice of a rocket, resembles the operation of an æolipile, which throws out the vapour of water, and sets in motion the air in its vicinity. As the more flexible must yield to the more solid body, so, in this respect, the gases produced are repelled by the air in contact with the orifice of the rocket. Thus it follows, that the rocket displaces a volume of air of a much greater weight than itself. The rocket then has upon the air, reasoning a priori, the same effect as the oars of a boat have upon water; and hence, the greater the volume of fire from the rocket, the greater is its velocity and ascent. The impelling force also increases as it consumes, being a uniformly accelerated motion.

      It also appears, that a rocket sent in an horizontal direction will not pass over so great a distance, as when its motion is vertical; for, a rocket, directed in a line parallel to the horizon, passes through a medium of equal density, but if directed perpendicular to the horizon, from the moment it leaves the ground till it arrives at its greatest height, it penetrates and passes through an atmosphere whose density is continually decreasing, and consequently its impelling force meets with less resistance. But when we consider the increase of the force of the rocket, there is no comparison between that force, and the diminution of the density of the air.

      From these premises it follows, that the ascension of rockets of all kinds is governed by one principle, namely, the disengagement of gaseous fluids and caloric, which displacing an equal volume of atmospheric air, operates by mutual contact.

      Since, however, the air is heavier than the gases produced by the rocket, as the latter are greatly expanded, it is evident, that the gases will ascend; their specific gravity at the time of dilatation being less than that of the air.

      The gases proceeding from the interior of the rocket, act therefore upon the air in the immediate vicinity of the orifice, and the rocket is consequently propelled, the stick guiding it in the direction given to it. If it were not for the rocket-stick or balance, its direction would be neither regular nor certain. Considering then, that, by the rocket-stick, the centre of gravity is changed from the rocket itself to the stick, the motion is regulated in its perpendicular flight by the stick. The rocket-stick must be always of a proportionate length and weight to the rocket.

      The motion given to rockets is always to be considered, for this depends upon the direction at first imparted; but the force of ascension is regulated by the size, and other circumstances which we have mentioned.

      Assuming the principle of constant force acting upon the rocket, its velocity will increase with the time, and will be as the squares of the time, according to the principles of uniform accelerated motion; but if the force varies from uniformity, then the velocity and spaces will proportionably vary.

      As action and re-action must be equal, the repulsion produced by the action of the gases upon the air is equal to the force impelling the rocket. The constant action produces equal acceleration of the motion.

      On the subject of the condensation and dilatation of air, and the different pressures at a mean temperature, which is more or less connected with this inquiry, the reader may consult with advantage, the work of Mr. Biot, (Traité de Physique, &c. tome i, p. 110, and 141.) The conclusions of Mr. Robins on the gaseous products of gunpowder, and the elasticity of those products, may be seen by referring to the article on gunpowder.

      It must be confessed, that the theory of rockets differs in many essential particulars from that of the usual projectiles; for the motion of rockets is more complicated than that of common