21 Bots, P., Benning, L.G., Rodriguez‐Blanco, J.‐D. et al. (2012). Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Design 12: 3806–3814.
22 Marron, A.O., Ratcliffe, S., Wheeler, G.L. et al. (2016). The evolution of silicon transport in eukaryotes. Mol. Biol. Evol. 33: 3226–3248.
23 Gibbs, G.V., Meagher, E.P., Newton, M.D., and Swanson, D.K. (1981). A comparison of experimental and theoretical bond length and angle variations for minerals and inorganic solids, and molecules. In: Structure and Bonding in Crystals (eds. M. O'Keefe and A. Navrotsky), 195–225. New York: Academic Press.
24 Richet, P. and Ottonello, G. (2014). The earth as a multiscale quantum‐mechanical system. C. R. Geosci. 346: 317–325.
25 Zanotto, E.D. and Cassar, D.R. (2017). The microscopic origin of the extreme glass‐forming ability of albite and B2O3. Sci. Rep. 7: 43022. https://doi.org/10.1038/srep43022.
26 Sipp, A., Neuville, D.R., and Richet, P. (1997). Viscosity, configurational entropy and relaxation kinetics of borosilicate melts. J. Non Cryst. Solids 211: 281–293.
27 Mazurin, O.V., Startsev, Y.K., and Potselueva, L.N. (1979). Temperature dependences of the viscosity of some glasses at a constant structural temperature. Sov. J. Glass Phys. Chem. 5: 68–79.
28 Sipp, A. and Richet, P. (2002). Equivalence of the kinetics of volume, enthalpy and viscosity relaxation in glass‐forming silicate liquids. J. Non Cryst. Solids 298: 202–212.
29 Nikonov, A.M., Bogdanov, V.N., Nemilov, S.V. et al. (1982). Structural relaxation in binary alkalisilicate melts. Fyz. Khim. Stekla 8: 694–703.
30 Vo‐Thanh, D., Bottinga, Y., Polian, A., and Richet, P. (2005). Sound velocity in alumino‐silicate liquids determined up to 2550 K from Brillouin spectroscopy: glass transitions and crossover temperatures. J. Non Cryst. Solids 351: 61–68.
31 Webb, S. and Courtial, P. (1996). Compressibility of melts in the system CaO‐Al2O3‐SiO2. Geochim. Cosmochim. Acta 60: 75–86.
32 Askarpour, V., Manghnani, M.H., and Richet, P. (1993). Elastic properties of diopside, anorthite and grossular glasses and liquids: a Brillouin scattering study up to 1400 K. J. Geophys. Res. B98: 17683–17689.
33 Stevens, J.R., Coakley, R.W., Chau, K.W., and Hunt, J.L. (1986). The pressure variation of the glass transition temperature in atactic polystyrene. J. Chem. Phys. 84: 1006–1014.
34 Thomas, S.B. and Parks, G.S. (1931). Studies on glass. VI. Some specific heat data on boron trioxide. J. Phys. Chem. 35: 2091–2102.
35 Hutchinson, J.M. (2009). Determination of the glass transition temperature. Methods correlation and structural heterogeneity. J. Therm. Anal. Calorim. 98: 578–589.
36 Adachi, K., Suga, H., and Seki, S. (1968). Phase changes in crystalline and glassy‐crystalline cyclohexanol. Bull. Chem. Soc. Jpn. 41: 1073–1087.
37 Maxwell, J.C. (1868). On the dynamical theory of gases. Philos. Mag. 35: 129–145. and 185–217.
38 Dingwell, D.B. and Webb, S.L. (1989). Structural relaxation in silicate melts and non‐Newtonian melt rheology in geologic processes. Phys. Chem. Minerals 16: 508–516.
39 Mysen, B. and Richet, P. (2005). Silicate Glasses and Melts. Properties and Structure. Amsterdam: Elsevier.
40 Toplis, M.J. and Richet, P. (2000). Equilibrium expansivity of silicate liquids in the glass transition range. Contrib. Mineral. Petrol. 139: 672–683.
41 Richet, P., Robie, R.A., and Hemingway, B.S. (1986). Low‐temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational‐entropy theory applied to the viscosity of liquid silicates. Geochim. Cosmochim. Acta 50: 1521–1533.
42 Angell, C.A. (1985). Strong and fragile liquids. In: Relaxation in Complex Systems (eds. K.L. Ngai and G.B. Wright), 3–11. Arlington, VA: Office Naval Research.
43 Goldstein, M. (1969). Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51: 3728–3739.
44 McKinney, J.E. and Goldstein, M. (1974). PVT relationships for liquid and glassy poly(vinyl acetate). J. Res. N.B.S. 78A: 331–353.
45 Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperature. Chem. Rev. 43: 219–256.
46 Chang, S.S. and Bestul, A.B. (1972). Heat capacity and thermodynamic properties of o‐terphenyl crystal, glass, and liquid. J. Chem. Phys. 56: 503–516.
47 Chang, S.S. and Bestul, A.B. (1974). Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K. J. Chem. Therm. 6: 325–344.
48 Gibbs, J.H. and Di Marzio, E. (1958). Nature of the glass transition and the glassy state. J. Chem. Phys. 28: 373–383.
49 Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys. 43: 139–146.
50 Angell, C.A. (1997). Entropy and fragility in supercooling liquids. J. Res. NIST 102: 171–185.
51 Laughlin, W.T. and Uhlmann, D.R. (1972). Viscous flow in simple organic liquids. J. Phys. Chem. 76: 2317–2325.
52 Angell, C.A. and Sichina, W. (1976). Thermodynamics of the glass transition: empirical aspects. Ann. N. Y. Acad. Sci. 279: 53–67.
Appendix A
Table A.1 Coordination numbers, effective ionic radii, field strengths, and electronegativities of some cations and anions of interest in oxide glasses. Source: Compilation courtesy J.F. Stebbins.
Coordinationa | Ionic radiusb (Å) | Field strengthb | Electronegativityc | |
---|---|---|---|---|
Anions | ||||
O2− | 2, 6 | 1.35, 1.40 | – | 3.5 |
F1− | 2, 6 | 1.29, 1.33 | – | 4.0 |
Cl1− | 6 | 1.81 | – | 3.0 |
Cations Network formers d | ||||
Fe3+ | 4, 6 | 0.49, 0.55 | 0.88, 0.82 | 1.8 |
Ga3+ | 4, 6 | 0.47, 0.62 | 0.90, 0.77 | 1.6 |
Al3+ | 4, 6 | 0.39, 0.54 | 0.98, 0.83 | 1.5 |
Te4+ |
3, 4e
|