References
1 1 Jones, G.O. and Simon, F.E. (1949). Qu'est‐ce qu'un verre? Endeavour 8: 175–181. (in French and in German).
2 2 Nernst, W. (1969). The New Heat Theorem. New York: Dover.
3 3 Takada, A., Conradt, R., and Richet, P. (2015). J. Non Cryst. Solids 429: 33–44.
4 4 De Donder, T. and Van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity, A Book of Principles. Stanford: Stanford University Press.
5 5 Wondraczek, L., Mauro, J.C., Eckert, J. et al. (2011). Towards ultrastrong glasses. Adv. Mater. 23: 4578–4586.
6 6 Angell, C.A. (1995). Formation of glasses from liquids and biopolymers. Science 267: 1924–1935.
7 7 Prigogine, I. and Defay, R. (1950). Thermodynamique Chimique, Nouvelle Rédaction. Liège: Desoer; Chemical Thermodynamics (London: Longmans, 1954).
8 8 Garden, J.‐L., Guillou, H., Richard, J., and Wondraczek, L. (2012). Non‐equilibrium configurational Prigogine‐Defay ratio. J. Non‐Equilib. Thermodyn. 37: 143–177.
9 9 Davies, R.O. and Jones, G.O. (1953). Thermodynamic and kinetic properties of glasses. Adv. Phys. (Phil. Mag. Suppl.) 2: 370–410.
10 10 Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperature. Chem. Rev. 43: 219–256.
11 11 Nemilov, S.V. (1995). Thermodynamic and Kinetic Aspects of the Vitreous State. Boca Raton: CRC Press.
12 12 Tool, A.Q. (1945). Relaxation of stresses in annealing glass. J. Res. Natl. Bur. Stand. 34: 199–211.
13 13 Tool, A.Q. (1946). Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29: 240–253.
14 14 Leuzzi, L. and Nieuwenhuizen, T. (2008). Thermodynamics of the Glassy State. New York: Taylor & Francis.
15 15 Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys. 43: 139–146.
16 16 Binder, K. and Kob, W. (2011). Glassy Materials and Disordered Solids. Singapore: World Scientific.
17 17 Simha, R. and Somcynsky, T. (1969). On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2: 342–350.
18 18 Möller, J., Gutzow, I., and Schmelzer, J.W.P. (2006). Freezing‐in and production of entropy in vitrification. J. Chem. Phys. 125: 094505‐1–094505‐13.
19 19 Garden, J.‐L., Guillou, H., Richard, J., and Wondraczek, L. (2012). Affinity and its derivatives in the glass transition process. J. Chem. Phys. 137: 024505‐1–024505‐10.
20 20 Bestul, A.B. and Chang, S.S. (1965). Limits on calorimetric residual entropies of glasses. J. Chem. Phys. 43: 4532–4533.
21 21 Tombari, E. and Johari, G.P. (2014). Change in entropy in thermal hysteresis of liquid‐glass‐liquid transition and consequences of violating the Clausius theorem. J. Chem. Phys. 141: 074502‐1–074502‐5.
22 22 Moynihan, C.T., Macedo, P.B., Montrose, C.J. et al. (1976). Structural relaxation in vitreous materials. Ann. N. Y. Acad. Sci. 279: 15–35.
23 23 Narayanaswamy, O.S. (1971). A model of structural relaxation in glass. J. Am. Ceram. Soc. 54: 491–498.
24 24 Cangialosi, D. (2014). Dynamics and thermodynamics of polymer glasses. J. Phys. Condens. Matter 26: 153101‐1–153101‐19.
25 25 Swallen, S.F., Kearns, K.L., Mapes, M.K. et al. (2007). Organic glasses with exceptional thermodynamic and kinetic stability. Science 315: 353–356.
26 26 Rodríguez‐Tinoco, C., González‐Silveira, M., Barrio, M. et al. (2016). Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci. Rep. 6: 34296–1–10.
Note
1 Reviewers:M.A. Ramos, Laboratorio de Bajas Temperaturas, Universidad Autónoma de Madrid, SpainA. Saiter, Physics of Materials Group, University of Rouen, Saint‐Etienne du Rouvray cedex, France
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.