Encyclopedia of Glass Science, Technology, History, and Culture. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781118799499
Скачать книгу
(NS3), NS4, and LS4 glasses. Solid lines: linear fits to the data.

      Although NMR experiments provide information on the nature of the local structure (Q [n]‐species, connectivity of the atoms, etc.) it is difficult to extract direct information on the geometry of the local structures, such as bond angles. That ab initio simulations are also useful for this is demonstrated in Figure 6b where we show the chemical shift as a function of Si–O–T angle, where O is a first nearest neighbor of Si atom and T is the second Si atom bonded to that O. The data clearly show: (i) that there is a linear relationship between this angle and the chemical shift, (ii) that this relationship is basically independent of the composition of the glass, and (iii) that its slope depends on the Q (n)‐species of the second Si atom.

      Other important topics are the effects of water on bulk and surface properties because the high reactivity of hydrogen induces local modification of the structure which can change the properties of the glass even at very low concentrations. The difficulty is then that fairly large systems must be investigated, which is the reason why relatively few simulations have been done on complex water‐bearing glasses [9, 15]. At present, the main problem faced indeed remains the large computational effort required and hence more efficient methods are being devised to reduce the computing time. Examples are the so‐called “order‐N” algorithms, with which the computational cost increases only linearly with the system size [34], or the second‐generation Car–Parrinello approach [35]. Although these advances will make it possible to deal with much larger systems, including, for instance, 104 oxygen atoms, it is unlikely that they will allow to gain one more order of magnitude in system size. To study problems like the mechanical behavior of glasses on the mesoscale, simulations will thus have to be done with effective potentials. But even in these cases ab initio simulations will be very useful by providing more accurate potential parameters [36–38].

      1 1 Frenkel, D. and Smit, B. (1996). Understanding Molecular Simulations: From Algorithms to Applications. San Diego: Academic Press.

      2 2 Marx, D. and Hutter, J. (2009). Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press.

      3 3 Kohn, W. and Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Phys. Rev. 140: A1133–A1138.

      4 4 Car, R. and Parrinello, M. (1985). Unified approach for molecular dynamics and density‐functional theory. Phys. Rev. Lett. 55: 2471–2474.

      5 5 Jakse, N. and Pasturel, A. (2014). The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics. J. Chem. Phys. 141: 094504.

      6 6 Pedesseau, L., Ispas, S., and Kob, W. (2015). First‐principles study of a sodium borosilicate glass‐former: I. The liquid state; and II. The glassy state. Phys. Rev. B 91: 134201, ibid. 134202.

      7 7 Sarnthein, J., Pasquarello, A., and Car, R. (1995). Model of vitreous SiO2 generated by an ab initio molecular‐dynamics quench from the melt. Phys. Rev. B 52: 12690–12695.

      8 8 Ispas, S., Benoit, M., Jund, P., and Jullien, R. (2001). Structural and electronic properties of the sodium tetrasilicate glass Na2Si2O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64: 214206.

      9 9 Pöhlmann, M., Benoit, M., and Kob, W. (2004). First‐principles molecular‐dynamics simulations of a hydrous silica melt: structural properties and hydrogen diffusion mechanism. Phys. Rev. B 70: 184209.

      10 10 Du, J. and Corrales, L.R. (2006). Structure, dynamics, and electronic properties of lithium disilicate melt and glass. J. Chem. Phys. 125: 114702.

      11 11 Spiekermann, G., Steele‐MacInnis, M., Kowalski, P.M. et al. (2013). Vibrational properties of silica species in MgO–SiO2 glasses obtained from ab initio molecular dynamics. Chem. Geol. 346: 22–33.

      12 12 Giacomazzi, L., Umari, P., and Pasquarello, A. (2005). Medium‐range structural properties of vitreous germania obtained through first‐principles analysis of vibrational spectra. Phys. Rev. Lett. 95: 075505.

      13 13 Ferlat, G., Charpentier, T., Seitsonen, A.P. et al. (2008). Boroxol rings in liquid and vitreous b 2 o 3 from first principles. Phys. Rev. Lett. 101: 065504.

      14 14 Binder, K. and Kob, W. (2011). Glassy Materials and Disordered Solids. Singapore: Word Scientific.

      15 15 Tilocca, A. and Cormack, A.N. (2011). The initial stages of bioglass dissolution: a Car–Parrinello molecular‐dynamics study of the glass–water interface. Proc. Roy. Soc. London A 467: 2102–2111.

      16 16 Pasquarello, A., Sarnthein, J., and Car, R. (1998). Dynamic structure factor of vitreous silica from first principles: comparison to neutron‐inelastic‐scattering experiments. Phys. Rev. B 57: 14133–14140.

      17 17 Benoit, M. and Kob, W. (2002). The vibrational dynamics of vitreous silica: classical force fields vs. first principles. Europhys. Lett. 60: 269–275.

      18 18 Giacomazzi, L., Umari, P., and Pasquarello, A. (2009). Medium‐range structure of vitreous SiO2 obtained through first‐principles investigation of vibrational spectra. Phys. Rev. B 79: 064202.

      19 19 Ispas, S., Zotov, N., De Wispelaere, S., and Kob, W. (2005). Vibrational properties of a sodium tetrasilicate glass: ab initio versus classical force fields. J. Non‐Cryst. Solids 351: 1144–1150.

      20 20 Huang, L. and Kieffer, J. (2015). Challenges in modeling mixed ionic‐covalent glass formers. In: Molecular Dynamics Simulations of Disordered Materials, 87–112. Berlin: Springer.

      21 21 Taraskin, S.N. and Elliott, S.R. (1997). Connection between the true vibrational density of states and that derived from inelastic neutron scattering. Phys. Rev. B 55: 117–123.

      22 22 Fabiani, E., Fontana, A., and Buchenau, U. (2008). Neutron scattering study of the vibrations in vitreous silica and germania. J. Chem. Phys. 128: 244507.

      23 23 Vollmayr, K., Kob, W., and Binder, K. (1996). Cooling‐rate effects in amorphous silica: a computer‐simulation study. Phys. Rev. B 54: 15808–15827.

      24 24 Pasquarello, A. and Car, R. (1997). Dynamical charge tensors and infrared spectrum of amorphous SiO2. Phys. Rev. Lett. 79: 1766–1769.

      25 25 Umari, P., Pasquarello, A., and dal Corso, A. (2001). Raman scattering intensities in α‐quartz: a first‐principles investigation. Phys. Rev. B 63: 094305.

      26 26 Lazzeri, M. and Mauri, F. (2003). First‐principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. Phys. Rev. Lett. 90: 036401.

      27 27 Pickard, C.J. and Mauri, F. (2001). All‐electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev.